Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of the thermohaline circulation in abrupt climate change

Abstract

The possibility of a reduced Atlantic thermohaline circulation in response to increases in greenhouse-gas concentrations has been demonstrated in a number of simulations with general circulation models of the coupled ocean–atmosphere system. But it remains difficult to assess the likelihood of future changes in the thermohaline circulation, mainly owing to poorly constrained model parameterizations and uncertainties in the response of the climate system to greenhouse warming. Analyses of past abrupt climate changes help to solve these problems. Data and models both suggest that abrupt climate change during the last glaciation originated through changes in the Atlantic thermohaline circulation in response to small changes in the hydrological cycle. Atmospheric and oceanic responses to these changes were then transmitted globally through a number of feedbacks. The palaeoclimate data and the model results also indicate that the stability of the thermohaline circulation depends on the mean climate state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of record of linearly detrended Δ14Catm to 10Be flux data from the GISP2 ice core.
Figure 2: Comparison of reconstructed forcings and responses in the Atlantic basin during the last deglaciation (11–22 kyr bp).
Figure 3: Time-history of the first two empirical orthogonal functions (EOFs) determined from 18 time series.
Figure 4: The spatial pattern of the first two empirical orthogonal functions extracted from the data set (see Fig. 3a).

Similar content being viewed by others

References

  1. Ganachaud, A. & Wunsch, C. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408, 453–457 (2000).

    CAS  ADS  Google Scholar 

  2. Weaver, A. J., Bitz, C. M., Fanning, A. F. & Holland, M. M. Thermohaline circulation: High latitude phenomena and the difference between the Pacific and Atlantic. Annu. Rev. Earth Planet. Sci. 27, 231–285 (1999).

    CAS  ADS  Google Scholar 

  3. Killworth, P. D. Deep convection in the world ocean. Rev. Geophys. Space Phys. 21, 1–26 (1983).

    ADS  Google Scholar 

  4. Grumbine, R. W. A model of the formation of high-salinity shelf water on polar continental shelves. J. Geophys. Res. 96, 22049–22062 (1991).

    ADS  Google Scholar 

  5. Stommel, H. Thermohaline convection with two stable regimes of flow. Tellus 13, 224–230 (1961).

    ADS  Google Scholar 

  6. Bryan, F. High-latitude salinity effects and interhemispheric thermohaline circulations. Nature 323, 301–304 (1986).

    CAS  ADS  Google Scholar 

  7. Manabe, S. & Stouffer, R. J. Two stable equilibria of a coupled ocean-atmosphere model. J. Clim. 1, 841–866 (1988).

    ADS  Google Scholar 

  8. Weaver, A. J. in Natural Climate Variability on Decade-to-Century Time Scales (eds Martinson, D. G. et al.) 365–381 (National Research Council, National Academy Press, Washington DC, 1995).

    Google Scholar 

  9. Alley, R. B. & Clark, P. U. The glaciation of the northern hemisphere: a global perspective. Annu. Rev. Earth Planet. Sci. 27, 149–182 (1999).

    CAS  ADS  Google Scholar 

  10. Stocker, T. F. Past and future reorganization in the climate system. Quat. Sci. Rev. 19, 301–319 (2000).

    ADS  Google Scholar 

  11. Broecker, W. S. Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance? Science 278, 1582–1588 (1997).

    CAS  PubMed  ADS  Google Scholar 

  12. Alley, R. B. et al. Abrupt Climate Change: Inevitable Surprises (National Research Council, National Academy Press, Washington DC, in the press).

  13. Cubasch, U. et al. in Climate Change 2001—The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds Houghton, J. T. et al.) 525–582 (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  14. Manabe, S. & Stouffer, R. J. Century-scale effects of increased atmospheric CO2 on the ocean-atmosphere system. Nature 364, 215–218 (1993).

    CAS  ADS  Google Scholar 

  15. Stocker, T. F. & Schmittner, A. Influence of CO2 emission rates on the stability of the thermohaline circulation. Nature 388, 862–865 (1997).

    CAS  ADS  Google Scholar 

  16. Schmittner, A., Yoshimori, M. & Weaver, A. J. Instability of glacial climate in an earth system model. Science (in the press).

  17. Dickson, R. R. & Brown, J. The production of North Atlantic deep water: Sources, sinks and pathways. J. Geophys. Res. 99, 12319–12341 (1994).

    ADS  Google Scholar 

  18. McCartney, M. S. Recirculating components to the deep boundary current of the northern North Atlantic. Prog. Oceanogr. 29, 283–383 (1992).

    ADS  Google Scholar 

  19. Labeyrie, L. et al. Changes in vertical structure of the North Atlantic Ocean between glacial and modern times. Quat. Sci. Rev. 11, 401–413 (1992).

    ADS  Google Scholar 

  20. Vidal, L., Labeyrie, L. & van Weering, T. C. E. Benthic δ18O records in the North Atlantic over the last glacial period (60–10 kyr): Evidence for brine formation. Paleoceanography 13, 245–251 (1998).

    ADS  Google Scholar 

  21. Sarnthein, M. et al. Changes in east Atlantic deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography 9, 209–267 (1994).

    ADS  Google Scholar 

  22. Yu, E. F., Francois, R. & Bacon, M. P. Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature 379, 689–694 (1996).

    CAS  ADS  Google Scholar 

  23. Rutberg, R. L., Hemming, S. R. & Goldstein, S. L. Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios. Nature 405, 935–938 (2000).

    CAS  PubMed  ADS  Google Scholar 

  24. Frank, M. Comparison of cosmogenic radionuclide production and geomagnetic field intensity over the last 200,000 years. Phil. Trans. R. Soc. Lond. A 358, 1089–1107 (2000).

    CAS  ADS  Google Scholar 

  25. Finkel, R. C. & Nishiizumi, K. Beryllium 10 concentrations in the Greenland Ice Sheet Project 2 ice core from 3–40 ka. J. Geophys. Res. 102, 26699–26706 (1997).

    CAS  ADS  Google Scholar 

  26. Muscheler, R., Beer, J., Wagner, G. & Finkel, R. C. Changes in deep-water formation during the Younger Dryas event inferred from 10Be and 14C records. Nature 408, 567–570 (2000).

    CAS  PubMed  ADS  Google Scholar 

  27. Marchal, O., Stocker, T. F. & Muscheler, R. Atmospheric radiocarbon during the Younger Dryas: production, ventilation, or both? Earth Planet Sci. Lett. 185, 383–395 (2001).

    CAS  ADS  Google Scholar 

  28. Broecker, W. S., Mix, A., Andree, M. & Oeschger, H. Radiocarbon measurements on coexisting benthic and planktic foraminifera shells: potential for reconstructing ocean ventilation times over the past 20000 years. Nucl. Instrum. Methods Phys. Res. B5, 331–339 (1984).

    ADS  Google Scholar 

  29. Sikes, E. L., Samson, C. R., Guilderson, T. P. & Howard, W. R. Old radiocarbon ages in the southwest Pacific Ocean during the last glacial period and deglaciation. Nature 405, 555–559 (2000).

    CAS  PubMed  ADS  Google Scholar 

  30. Cuffey, K. M. et al. Large Arctic temperature change at the Wisconsin-Holocene glacial transition. Science 270, 455–458 (1995).

    CAS  ADS  Google Scholar 

  31. Bard, E., Rostek, F., Turon, J.-L. & Gendreau, S. Hydrological impact of Heinrich events in the subtropical northeast Atlantic. Science 289, 1321–1324 (1999).

    ADS  Google Scholar 

  32. Severinghaus, J. P. & Brook, E. J. Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science 286, 930–934 (1999).

    CAS  PubMed  Google Scholar 

  33. Hughen, K. A., Southon, J. R., Lehman, S. J. & Overpeck, J. T. Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290, 1951–1954 (2000).

    CAS  PubMed  ADS  Google Scholar 

  34. Stocker, T. F. & Wright, D. G. Rapid transitions of the ocean's deep circulation induced by changes in surface water fluxes. Nature 351, 729–732 (1991).

    ADS  Google Scholar 

  35. Manabe, S. & Stouffer, R. J. Coupled ocean-atmosphere model response to freshwater input: comparison to Younger Dryas event. Paleoceanography 12, 321–336 (1997).

    ADS  Google Scholar 

  36. Fanning, A. F. & Weaver, A. J. Temporal-geographical meltwater influences on the North Atlantic Conveyor: Implications for the Younger Dryas. Paleoceanography 12, 307–320 (1997).

    ADS  Google Scholar 

  37. Bond, G. C. et al. in Mechanisms of Global Climate Change at Millennial Timescales (eds Clark, P. U., Webb, R. S. & Keigwin, L. D.) 35–58 (Geophysical Monograph 112, American Geophysical Union, Washington DC, 1999).

    Google Scholar 

  38. Clark, P. U. et al. Freshwater forcing of abrupt climate change during the last glaciation. Science 293, 283–287 (2001).

    CAS  PubMed  ADS  Google Scholar 

  39. Fairbanks, R. G. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature 342, 637–642 (1989).

    ADS  Google Scholar 

  40. Clark, P. U., Mitrovica, J. X., Milne, G. A. & Tamisiea, M. Sea-level fingerprinting as a direct test for the source of global meltwater pulse 1A. Science (submitted).

  41. Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B. & Bender, M. L. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141–146 (1998).

    CAS  ADS  Google Scholar 

  42. McManus, J. F., Oppo, D. W. & Cullen, J. L. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283, 971–975 (1999).

    CAS  PubMed  ADS  Google Scholar 

  43. Alley, R. B., Anandakrishnan, S. & Jung, P. Stochastic resonance in the North Atlantic. Paleoceanography 16, 190–198 (2001).

    ADS  Google Scholar 

  44. Hostetler, S. W., Clark, P. U., Bartlein, P. J., Mix, A. C. & Pisias, N. Atmospheric transmission of North Atlantic Heinrich events. J. Geophys. Res. 104, 3947–3952 (1999).

    ADS  Google Scholar 

  45. Hughen, K. A., Overpeck, J. T., Peterson, L. C. & Trumbore, S. Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature 380, 51–54 (1996).

    CAS  ADS  Google Scholar 

  46. Peterson, L. C., Haug, G. H., Hughen, K. A. & Rohl, U. Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science 290, 1947–1951 (2000).

    CAS  PubMed  ADS  Google Scholar 

  47. Schulz, H., von Rad, U. & Erlenkeuser, H. Correlations between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393, 54–57 (1998).

    CAS  ADS  Google Scholar 

  48. Kienast, M., Steinke, S., Stattegger, K. & Calvert, S. E. Synchronous tropical South China Sea SST change and Greenland warming during deglaciation. Science 291, 2132–2134 (2001).

    CAS  PubMed  ADS  Google Scholar 

  49. Behl, R. J. & Kennett, J. P. Brief interstadial events in the Santa Barbara basin, NE Pacific, during the past 60 kyr. Nature 379, 243–246 (1996).

    CAS  ADS  Google Scholar 

  50. Blunier, T. & Brook, E. J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109–112 (2001).

    CAS  ADS  Google Scholar 

  51. Broecker, W. S. Paleocean circulation during the last deglaciation: A bipolar seesaw? Paleoceanography 13, 119–121 (1998).

    ADS  Google Scholar 

  52. Crowley, T. J. North Atlantic deep water cools the southern hemisphere. Paleoceanography 7, 489–497 (1992).

    ADS  Google Scholar 

  53. Schiller, A., Mikolajewicz, U. & Voss, R. The stability of the thermohaline circulation in a coupled ocean-atmosphere general circulation model. Clim. Dyn. 13, 325–347 (1997).

    Google Scholar 

  54. Stocker, T. F. The seesaw effect. Science 282, 61–62 (1998).

    CAS  Google Scholar 

  55. Oeschger, H. et al. in Climate Processes and Climate Sensitivity (eds Hansen, J. E. & Takahashi, T.) 299–306 (Geophysical Monograph 29, American Geophysical Union, Washington DC, 1984).

    Google Scholar 

  56. Mikolajewicz, U. & Maier-Reimer, E. Mixed boundary conditions in ocean general circulation models and their influence on the stability of the model's conveyor belt. J. Geophys. Res. 99, 22633–22644 (1994).

    ADS  Google Scholar 

  57. Schmittner, A. & Weaver, A. J. Dependence of multiple climate states on ocean mixing parameters. Geophys. Res. Lett. 28, 1027–1030 (2001).

    ADS  Google Scholar 

  58. Tziperman, E. Inherently unstable climate behaviour due to weak thermohaline ocean circulation. Nature 386, 592–595 (1997).

    CAS  ADS  Google Scholar 

  59. Mikolajewicz, U., Maier-Reimer, E., Crowley, T. J. & Kim, K.-Y. Effect of Drake and Panamanian gateways on the circulation of an ocean model. Paleoceanography 8, 409–426 (1993).

    ADS  Google Scholar 

  60. Ganopolski, A. & Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, 153–158 (2001).

    CAS  PubMed  ADS  Google Scholar 

  61. Schmittner, A., Appenzeller, C. & Stocker, T. F. Enhanced Atlantic freshwater export during El Niño. Geophys. Res. Lett. 27, 1163–1166 (2000).

    ADS  Google Scholar 

  62. Timmermann, A. et al. Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398, 694–696 (1999).

    CAS  ADS  Google Scholar 

  63. Johnsen, S. J. et al. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311–313 (1992).

    ADS  Google Scholar 

  64. Rind, D. et al. Effects of glacial meltwater in the GISS coupled atmosphere-ocean model: Part I: North Atlantic Deep Water response. J. Geophys. Res. 106, 27335–27354 (2001).

    ADS  Google Scholar 

  65. Rahmstorf, S. & Ganopolski, A. Long-term global warming scenarios computed with an efficient coupled climate model. Clim. Change 43, 353–367 (1999).

    CAS  Google Scholar 

  66. Mikolajewicz, U. & Voss, R. The role of the individual air-sea flux components in CO2-induced changes of the ocean's circulation and climate. Clim. Dyn. 16, 627–642 (2000).

    Google Scholar 

  67. Wood, R. A., Keen, A. B., Mitchell, J. F. B. & Gregory, J. M. Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature 399, 572–575 (1999).

    CAS  ADS  Google Scholar 

  68. Joos, F., Plattner, G.-K., Stocker, T. F., Marchal, O. & Schmittner, A. Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284, 464–467 (1999).

    CAS  PubMed  ADS  Google Scholar 

  69. Latif, M., Roeckner, E., Mikolajewicz, U. & Voss, R. Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. J. Clim. 13, 1809–1813 (2000).

    ADS  Google Scholar 

  70. Delworth, T. L. & Dixon, K. W. Implications of the recent trend in the Arctic/North Atlantic Oscillation for the North Atlantic thermohaline circulation. J. Clim. 13, 3721–3727 (2000).

    ADS  Google Scholar 

  71. Knutti, R. & Stocker, T. F. Limited predictability of the future thermohaline circulation close to an instability threshold. J. Clim. 15, 179–186 (2002).

    ADS  Google Scholar 

  72. Stuiver, M. et al. INTCAL98 radiocarbon age calibration, 24,000 cal BP. Radiocarbon 40, 1041–1083 (1998).

    CAS  Google Scholar 

  73. Kitigawa, H. & van der Plicht, J. Atmospheric radiocarbon calibration beyond 11,900 cal BP from Lake Suigetsu laminated sediments. Radiocarbon 42, 369–380 (2000).

    Google Scholar 

  74. Bard, E., Arnold, M., Hamelin, B., Tisnerat-Laborde, N. & Cabioch, G. Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40, 1085–1092 (1998).

    CAS  Google Scholar 

  75. Cuffey, K. M. & Clow, G. D. Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition. J. Geophys. Res. 102, 26383–26396 (1997).

    ADS  Google Scholar 

  76. Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. J. & Jouzel, J. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552–554 (1993).

    CAS  ADS  Google Scholar 

  77. Meese, D. A. et al. The Greenland Ice Sheet Project 2 depth-age scale: Methods and results. J. Geophys. Res. 102, 26411–26423 (1997).

    CAS  ADS  Google Scholar 

  78. Rühlemann, C., Mulitza, S., Muller, P. J., Wefer, G. & Zahn, R. Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation. Nature 402, 511–514 (1999).

    ADS  Google Scholar 

  79. Sachs, J. P., Anderson, R. F. & Lehman, S. J. Glacial surface temperatures of the southeast Atlantic Ocean. Science 293, 2077–2079 (2001).

    CAS  PubMed  ADS  Google Scholar 

  80. Steig, E. J. et al. Synchronous climate changes in Antarctica and the North Atlantic. Science 282, 92–95 (1998).

    CAS  ADS  Google Scholar 

  81. Mulvaney, R. et al. The transition from the last glacial period in inland and near coastal Antarctica. Geophys. Res. Lett. 27, 2673–2676 (2000).

    ADS  Google Scholar 

  82. Pisias, N. G., Mix, A. C. & Heusser, L. Millennial scale climate variability of the northeast Pacific Ocean and northwest North America based on radiolaria and pollen. Quat. Sci. Rev. 20, 1561–1576 (2001).

    ADS  Google Scholar 

  83. Mix, A. C. et al. in Mechanisms of Global Climate Change at Millennial Timescales (eds Clark, P. U., Webb, R. S. & Keigwin, L. D.) 127–148 (Geophysical Monograph 112, American Geophysical Union, Washington DC, 1999).

    Google Scholar 

  84. Thompson, L. G. et al. Late glacial stage and Holocene tropical ice core records from Huascaran, Peru. Science 269, 46–50 (1995).

    CAS  ADS  Google Scholar 

  85. Thompson, L. G. et al. A 25,000-year tropical climate history from Bolivian ice cores. Science 282, 1858–1864 (1998).

    CAS  PubMed  ADS  Google Scholar 

  86. Bard, E., Rostek, F. & Sonzogni, C. Interhemispheric synchrony of the last deglaciation inferred from alkenone paleothermometry. Nature 385, 707–710 (1997).

    CAS  ADS  Google Scholar 

  87. Little, M. G. et al. Trade wind forcing of upwelling seasonality, and Heinrich events as a response to sub-Milankovitch climate variability. Paleoceanography 12, 568–576 (1997).

    ADS  Google Scholar 

  88. Charles, C. D., Lynch-Stieglitz, J., Ninnemann, U. S. & Fairbanks, R. G. Climate connections between the hemispheres revealed by deep sea sediment core/ice core correlations. Earth Planet. Sci. Lett. 142, 19–27 (1996).

    CAS  ADS  Google Scholar 

  89. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    CAS  ADS  Google Scholar 

  90. Jouzel, J. et al. A new 27 ky high resolution East Antarctic climate record. Geophys. Res. Lett. 28, 3199–3202 (2001).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank G. Bond, J. Jouzel, A. Mix, R. Muscheler, J. Sachs and J. van der Plicht for providing data, the NOAA-NGDC Paleoclimate Program for their data repository, and S. Hostetler, A. Mix, A. Schmittner and R. Stouffer for comments. This work was supported by grants from the Earth System History Program of the US NSF (P.U.C. and N.G.P.), the Swiss NSF (T.F.S.) and the Canadian NSERC (A.J.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter U. Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, P., Pisias, N., Stocker, T. et al. The role of the thermohaline circulation in abrupt climate change. Nature 415, 863–869 (2002). https://doi.org/10.1038/415863a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/415863a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing