Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita

Abstract

Dyskeratosis congenita is a progressive bone-marrow failure syndrome that is characterized by abnormal skin pigmentation, leukoplakia and nail dystrophy1,2. X-linked, autosomal recessive and autosomal dominant inheritance have been found in different pedigrees. The X-linked form of the disease is due to mutations in the gene DKC1 in band 2, sub-band 8 of the long arm of the X chromosome (ref. 3). The affected protein, dyskerin, is a nucleolar protein that is found associated with the H/ACA class of small nucleolar RNAs and is involved in pseudo-uridylation of specific residues of ribosomal RNA4. Dyskerin is also associated with telomerase RNA (hTR)5, which contains a H/ACA consensus sequence6,7. Here we map the gene responsible for dyskeratosis congenita in a large pedigree with autosomal dominant inheritance. Affected members of this family have an 821-base-pair deletion on chromosome 3q that removes the 3′ 74 bases of hTR. Mutations in hTR were found in two other families with autosomal dominant dyskeratosis congenita.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification and location of hTR mutations.
Figure 2: Expression of hTR mutations.

Similar content being viewed by others

References

  1. Drachtman, R. A. & Alter, B. P. Dyskeratosis congenita: clinical and genetic heterogeneity. Report of a new case and review of the literature. Am. J. Pediatr. Hematol. Oncol. 14, 297–304 (1992).

    Article  CAS  Google Scholar 

  2. Dokal, I. Dyskeratosis congenita in all its forms. Br. J. Haematol. 110, 768–779 (2000).

    Article  CAS  Google Scholar 

  3. Heiss, N. S. et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nature Genet. 19, 32–38 (1998).

    Article  CAS  Google Scholar 

  4. Tollervey, D. & Kiss, T. Function and synthesis of small nucleolar RNAs. Curr. Opin. Cell. Biol. 9, 337–342 (1997).

    Article  CAS  Google Scholar 

  5. Mitchell, J. R., Wood, E. & Collins, K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402, 551–555 (1999).

    Article  CAS  ADS  Google Scholar 

  6. Feng, J. et al. The RNA component of human telomerase. Science 269, 1236–1241 (1995).

    Article  CAS  ADS  Google Scholar 

  7. Mitchell, J. R., Cheng, J. & Collins, K. A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol. Cell. Biol. 19, 567–576 (1999).

    Article  CAS  Google Scholar 

  8. Pogacic, V., Dragon, F. & Filipowicz, W. Human H/ACA small nucleolar RNPs and telomerase share evolutionarily conserved proteins NHP2 and NOP10. Mol. Cell. Biol. 20, 9028–9040 (2000).

    Article  CAS  Google Scholar 

  9. Dragon, F., Pogacic, V. & Filipowicz, W. In vitro assembly of human H/ACA small nucleolar RNPs reveals unique features of U17 and telomerase RNAs. Mol. Cell. Biol. 20, 3037–3048 (2000).

    Article  CAS  Google Scholar 

  10. Prescott, J. C. & Blackburn, E. H. Telomerase: Dr Jekyll or Mr Hyde? Curr. Opin. Genet. Dev. 9, 368–373 (1999).

    Article  CAS  Google Scholar 

  11. Collins, K. Mammalian telomeres and telomerase. Curr. Opin. Cell. Biol. 12, 378–383 (2000).

    Article  CAS  Google Scholar 

  12. Nakamura, T. M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955–959 (1997).

    Article  CAS  Google Scholar 

  13. Alter, B. P. Molecular medicine and bone marrow failure syndromes. J. Pediatr. 136, 275–276 (2000).

    Article  CAS  Google Scholar 

  14. Marciniak, R. A., Johnson, F. B. & Guarente, L. Dyskeratosis congenita, telomeres and human ageing. Trends. Genet. 16, 193–195 (2000).

    Article  CAS  Google Scholar 

  15. Vulliamy, T. J., Knight, S. W., Mason, P. J. & Dokal, I. Very short telomeres in the peripheral blood of patients with X-linked and autosomal dyskeratosis congenita. Blood Cells Mol. Dis. 27, 353–357 (2001).

    Article  CAS  Google Scholar 

  16. Chen, J. L., Blasco, M. A. & Greider, C. W. Secondary structure of vertebrate telomerase RNA. Cell 100, 503–514 (2000).

    Article  CAS  Google Scholar 

  17. Martin-Rivera, L. & Blasco, M. A. Identification of functional domains and dominant negative mutations in vertebrate telomerase RNA using an in vivo reconstitution system. J. Biol. Chem. 276, 5856–5865 (2001).

    Article  CAS  Google Scholar 

  18. Bachand, F. & Autexier, C. Functional regions of human telomerase reverse transcriptase and human telomerase RNA required for telomerase activity and RNA-protein interactions. Mol. Cell. Biol. 21, 1888–1897 (2001).

    Article  CAS  Google Scholar 

  19. Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    Article  CAS  Google Scholar 

  20. Lee, H. W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569–574 (1998).

    Article  CAS  ADS  Google Scholar 

  21. Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999).

    Article  CAS  Google Scholar 

  22. Herrera, E. et al. Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J. 18, 2950–2960 (1999).

    Article  CAS  Google Scholar 

  23. Hemann, M. T. & Greider, C. W. Wild-derived inbred mouse strains have short telomeres. Nucleic Acids Res. 28, 4474–4478 (2000).

    Article  CAS  Google Scholar 

  24. Artandi, S. E. & DePinho, R. A. A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr. Opin. Genet. Dev. 10, 39–46 (2000).

    Article  CAS  Google Scholar 

  25. Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).

    Article  CAS  ADS  Google Scholar 

  26. Vulliamy, T. J., Knight, S. W., Dokal, I. & Mason, P. J. Skewed X-inactivation in carriers of X-linked dyskeratosis congenita. Blood 90, 2213–2216 (1997).

    Article  CAS  Google Scholar 

  27. Sambrook, J., Fritsch, E. & Maniatis, T. Molecular Cloning: A Laboratory Manual. (Cold Spring Harbor, New York, 1989).

    Google Scholar 

  28. Brown, W. R. et al. Structure and polymorphism of human telomere-associated DNA. Cell 63, 119–132 (1990).

    Article  CAS  Google Scholar 

  29. Notaro, R., Cimmino, A., Tabarini, D., Rotoli, B. & Luzzatto, L. In vivo telomere dynamics of human hematopoietic stem cells. Proc. Natl Acad. Sci. USA 94, 13782–13785 (1997).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. Alter and E. Gluckman for facilitating recruitment to the dyskeratosis congenita registry, and the dyskeratosis congenita families and their clinicians who provided us with the samples. We also thank Z. Amoura, R. Gruppo and J. Miller. We thank D. Stevens for technical assistance and D. Smyth for help with the linkage. We are grateful to S. Knight, W. Watkins, J. Clarke, J. O'Donnel and S. Reiss for help and discussions, and J. Goldman and L. Luzzatto for their continued support of the dyskeratosis congenita project. The genome screen was performed at the Linkage Hotel MRC UK HGMP Resource Centre. This work was supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Mason.

Supplementary information

Figure S1

(GIF 31.8 KB)

Family DCR101. Localisation of the gene responsible for autosomal dominant DC to chromosome 3q was achieved through a genome wide screen of 400 microsatellite markers, initially using 6 affected (II:3, II:6, II:12, II:15, III:4 and III:8) and 2 unaffected (II:4 and II:10) individuals from this pedigree. Linkage was observed to the markers in the boxed haplotype, with a maximal LOD score of 1.8 being obtained with the marker D3S3725. Shaded individuals were either too young for diagnosis or showed features that were suggestive but not diagnostic of DC. Affected individuals are shown in black, normal individuals in white. The haplotype segregating with the disease is boxed in all individuals carrying the hTR deletion.

SI Table. Phenotype of DC patients and mTR -/- mice

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vulliamy, T., Marrone, A., Goldman, F. et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413, 432–435 (2001). https://doi.org/10.1038/35096585

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35096585

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing