Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum

Abstract

Persistent and recurrent infections by Plasmodium falciparum malaria parasites result from the ability of the parasite to undergo antigenic variation and evade host immune attack1,2. P. falciparum parasites generate high levels of variability in gene families that comprise virulence determinants of cytoadherence and antigenic variation3,4,5,6,7, such as the var genes. These genes encode the major variable parasite protein (PfEMP-1), and are expressed in a mutually exclusive manner at the surface of the erythrocyte infected by P. falciparum8,9,10,11,12. Here we identify a mechanism by which var gene sequences undergo recombination at frequencies much higher than those expected from homologous crossover events alone13. These recombination events occur between subtelomeric regions of heterologous chromosomes, which associate in clusters near the nuclear periphery in asexual blood-stage parasites or in bouquet-like configurations near one pole of the elongated nuclei in sexual parasite forms. We propose that the alignment of var genes in heterologous chromosomes facilitates gene conversion and promotes the diversity of antigenic and adhesive phenotypes. The association of virulence factors with a specific nuclear subcompartment may also have implications for variation during mitotic recombination in asexual blood stages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Frequent ectopic recombination events between members of the var gene family during sexual reproduction.
Figure 2: Ectopic gene conversion in progeny from the HB3×Dd2 and HB3×3D7 crosses.
Figure 3: Physical clustering of P. falciparum subtelomeric regions detected in sexual and asexual parasites.
Figure 4: Promiscuous bouquet formation of P. falciparum chromosome ends.

Similar content being viewed by others

References

  1. Miller, L. H., Good, M. F. & Milon, G. Malaria pathogenesis. Science 264, 1878–1883 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Borst, P., Bitter, W., McCulloch, R., Van Leeuwen, F. & Rudenko, G. Antigenic variation in malaria. Cell 82, 1–4 (1995).

    Article  CAS  Google Scholar 

  3. Biggs, B. A. et al. Adherence of infected erythrocytes to venular endothelium selects for antigenic variants of Plasmodium falciparum. J. Immunol. 149, 2047–2054 (1992).

    CAS  PubMed  Google Scholar 

  4. Roberts, D. J. et al. Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 357, 689– 692 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Carlson, J. et al. Human cerebral malaria: association with erythrocyte rosetting and lack of anti-rosetting antibodies. Lancet 336, 1457–1460 (1990).

    Article  CAS  Google Scholar 

  6. Fried, M. & Duffy, P. Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science 272, 1502–1504 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Bull, P. C. et al. Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nature Med. 4, 358–360 (1998).

    Article  CAS  Google Scholar 

  8. Baruch, D. I. et al. Cloning of P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82, 77– 87 (1995).

    Article  CAS  Google Scholar 

  9. Su, X. Z. et al. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82, 89– 100 (1995).

    Article  CAS  Google Scholar 

  10. Smith, J. D. et al. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82, 101– 110 (1995).

    Article  CAS  Google Scholar 

  11. Chen, Q. et al. Developmental selection of var gene expression in Plasmodium falciparum. Nature 394, 392 –395 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Scherf, A. et al. Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. EMBO J. 17, 5418–5426 (1998).

    Article  CAS  Google Scholar 

  13. Su, X. Z. et al. A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. Science 286, 1351–1353 (1999).

    Article  CAS  Google Scholar 

  14. Gupta, S., Snow, R. W., Donnelly, C. & Newbold, C. Acquired immunity and postnatal clinical protection in childhood cerebral malaria. Proc. R. Soc. Lond. B 266, 33– 38 (1999).

    Article  CAS  Google Scholar 

  15. Hernandez-Rivas, R. et al. Expressed var genes are found in Plasmodium falciparum subtelomeric regions. Mol. Cell. Biol. 17, 604–611 (1997).

    Article  CAS  Google Scholar 

  16. Gardner, M. J. et al. Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. Science 282, 1126– 1132 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Bowman, S. et al. The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum. Nature 400, 532– 538 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Gupta, S. & Anderson, R. M. Population structure of pathogens: The role of immune selection. Parasitol. Today 15, 497–501 (1999).

    Article  CAS  Google Scholar 

  19. Pryde, F. E., Gorham, H. C. & Louis, E. J. Chromosome ends: all the same under their caps. Curr. Opin. Genet. Dev. 7, 822–8 (1997).

    Article  CAS  Google Scholar 

  20. Dernburg, A. F., Sedat, J. W., Cande, W. Z. & Bass, H. W. in Telomeres (eds Blackburn, E. H. & Greider, C. W.) 295– 338 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1995).

    Google Scholar 

  21. de Lange, T. Ending up with the right partner. Nature 392, 753–754 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Cooper, J. P., Watanabe, Y. & Nurse, P. Fission yeast Taz1 protein is required for meiotic telomere clustering and recombination. Nature 392, 828–831 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Hinterberg, K., Mattei, D., Wellems, T. E. & Scherf, A. Interchromosomal exchange of a large subtelomeric segment in a Plasmodium falciparum cross. EMBO J. 13, 4174– 4180 (1994).

    Article  CAS  Google Scholar 

  24. Figueiredo, L. M., Pirrit, L. A. & Scherf, A. Genomic organisation and chromatin structure of Plasmodium falciparum chromosome ends. Mol. Biochem. Parasitol. 106, 169–174 ( 2000).

    Article  CAS  Google Scholar 

  25. Deitsch, K. W., del Pinal, A. & Wellems, T. E. Intra-cluster recombination and var transcription switches in the antigenic variation of Plasmodium falciparum. Mol. Biochem. Parasitol. 101, 107– 116 (1999).

    Article  CAS  Google Scholar 

  26. Andrulis, E. D., Neiman, A. M., Zappulla, D. C. & Sternglanz, R. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394, 592–595 (1998); erratum Nature 395 , 525 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Walliker, D. et al. Genetic analysis of the human malaria parasite Plasmodium falciparum. Science 236, 1661– 1666 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Wellems, T. E. et al. Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross. Nature 345, 253–255 (1990).

    Article  ADS  CAS  Google Scholar 

  29. Carter, R., Ranford-Cartwright, L. & Alano, P. The culture and preparation of gametocytes of Plasmodium falciparum for immunochemical, molecular, and mosquito infectivity studies. Methods Mol. Biol. 21, 67– 88 (1993).

    CAS  PubMed  Google Scholar 

  30. Scherf, A. et al. The 11-1 gene of Plasmodium falciparum codes for distinct fast evolving repeats. EMBO J. 7, 1129– 1137 (1988).

    Article  CAS  Google Scholar 

  31. Kimura, E., Mattei, D., di Santi, S. M. & Scherf, A. Genetic diversity in the major merozoite surface antigen of Plasmodium falciparum: high prevalence of a third polymorphic form detected in strains derived from malaria patients. Gene 91, 57–62 (1990).

    Article  CAS  Google Scholar 

  32. Ersfeld, K. & Gull, K. Partitioning of large and minichromosomes in Trypanosoma brucei. Science 276, 611–614 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Roth for critically reading the manuscript, D. Mattei for providing the Pf332 probes, V. Galy for help with the colocalization studies and D. Walliker for the progeny clones of the HB3×3D7 cross. This work has been supported by grants from the Commission of the European Communities for research and technical development. L.H.F.-J. was supported by a Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) fellowship. L.A.P. was supported by a European Community grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Scherf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freitas-Junior, L., Bottius, E., Pirrit, L. et al. Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum. Nature 407, 1018–1022 (2000). https://doi.org/10.1038/35039531

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35039531

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing