Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic polymorphism, linkage disequilibrium, haplotype structure and novel allele analysis of CYP2C19 and CYP2D6 in Han Chinese

Abstract

The cytochrome P450 2C19 and 2D6 enzymes are predominantly found in the human liver, and have important functions in the metabolism of many different classes of commonly used drugs. Their genetic polymorphisms give rise to both important interethnic variability in metabolism and the risk of treatment failure or dose-dependent drug toxicity. To investigate genetic polymorphisms in CYP2C19 and CYP2D6 genes in Han Chinese, we sequenced regions of the 5′ flanking region, exon, intron and 3′ UTR from these two genes using 100 unrelated healthy Chinese Hans. We detected 48 genetic variants in CYP2C19. A total of 15 of them are novel, including two polymorphisms in putative transcriptional factor-binding sites. The CYP2C19*1, *2, *3, *4, *17, *23, *24 and *25 alleles have frequencies of 67.5, 25.5, 2, 0.5, 3, 0.5, 0.5 and 0.5%, respectively. Based on computational predictions, three novel alleles (CYP2C19*23, *24 and *25) are deleterious mutations of the CYP2C19 protein. In CYP2D6, we identified 84 different polymorphisms, including 18 novel single-nucleotide polymorphisms. One novel polymorphism is located in a potential cis-regulatory element of the gene. The allele frequencies of CYP2D6*1, *2, *4, *5, *6, *10, *14, *21, *36, *41, *43, *52 and *71 are 18.5, 14, 1, 7, 0.5, 49, 1.5, 0.5, 1, 4, 0.5, 1 and 1.5%, respectively. The occurrence of CYP2D6 duplication is 0.5%. The novel CYP2D6*71 is anticipated as a putative poor metabolizer allele. We also performed linkage disequilibrium analysis and observed strong linkage disequilibrium spanning of the CYP2C19 and CYP2D6 regions. In addition, network analysis showed that 15 haplotypes of CYP2C19 and 22 of CYP2D6 are classified into five and three groups, respectively. Comparisons of allele frequency distributions revealed significant interethnic and intraethnic differences in these two genes. In conclusion, this study revealed that CYP2C19 and CYP2D6 have a complicated allele composition and distinct frequency distribution in Han Chinese.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 1996; 6: 1–42.

    Article  CAS  PubMed  Google Scholar 

  2. Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW . Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 2004; 14: 1–18.

    Article  CAS  PubMed  Google Scholar 

  3. Goldstein JA . Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol 2001; 52: 349–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gardiner SJ, Begg EJ . Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol Rev 2006; 58: 521–590.

    Article  CAS  PubMed  Google Scholar 

  5. de Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA . The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 1994; 269: 15419–15422.

    CAS  PubMed  Google Scholar 

  6. Luo HR, Poland RE, Lin KM, Wan YJ . Genetic polymorphism of cytochrome P450 2C19 in Mexican Americans: a cross-ethnic comparative study. Clin Pharmacol Ther 2006; 80: 33–40.

    Article  CAS  PubMed  Google Scholar 

  7. De Morais SM, Wilkinson GR, Blaisdell J, Meyer UA, Nakamura K, Goldstein JA . Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol 1994; 46: 594–598.

    CAS  PubMed  Google Scholar 

  8. Gaedigk A, Gotschall RR, Forbes NS, Simon SD, Kearns GL, Leeder JS . Optimization of cytochrome P4502D6 (CYP2D6) phenotype assignment using a genotyping algorithm based on allele frequency data. Pharmacogenetics 1999; 9: 669–682.

    Article  CAS  PubMed  Google Scholar 

  9. Sistonen J, Sajantila A, Lao O, Corander J, Barbujani G, Fuselli S . CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure. Pharmacogenet Genomics 2007; 17: 93–101.

    CAS  PubMed  Google Scholar 

  10. Qin S, Shen L, Zhang A, Xie J, Shen W, Chen L et al. Systematic polymorphism analysis of the CYP2D6 gene in four different geographical Han populations in mainland China. Genomics 2008; 92: 152–158.

    Article  CAS  PubMed  Google Scholar 

  11. Ji L, Pan S, Wu J, Marti-Jaun J, Hersberger M . Genetic polymorphisms of CYP2D6 in Chinese mainland. Chin Med J (Engl) 2002; 115: 1780–1784.

    CAS  Google Scholar 

  12. Garcia-Barcelo M, Chow LY, Chiu HF, Wing YK, Lee DT, Lam KL et al. Genetic analysis of the CYP2D6 locus in a Hong Kong Chinese population. Clin Chem 2000; 46: 18–23.

    CAS  PubMed  Google Scholar 

  13. Teh LK, Ismail R, Yusoff R, Hussein A, Isa MN, Rahman AR . Heterogeneity of the CYP2D6 gene among Malays in Malaysia. J Clin Pharm Ther 2001; 26: 205–211.

    Article  CAS  PubMed  Google Scholar 

  14. Gaedigk A, Coetsee C . The CYP2D6 gene locus in South African Coloureds: unique allele distributions, novel alleles and gene arrangements. Eur J Clin Pharmacol 2008; 64: 465–475.

    Article  CAS  PubMed  Google Scholar 

  15. Gaedigk A, Simon SD, Pearce RE, Bradford LD, Kennedy MJ, Leeder JS . The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther 2008; 83: 234–242.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao TM, Lee TD . Gm and Km allotypes in 74 Chinese populations: a hypothesis of the origin of the Chinese nation. Hum Genet 1989; 83: 101–110.

    Article  CAS  PubMed  Google Scholar 

  17. Chu JY, Huang W, Kuang SQ, Wang JM, Xu JJ, Chu ZT et al. Genetic relationship of populations in China. Proc Natl Acad Sci USA 1998; 95: 11763–11768.

    Article  CAS  PubMed  Google Scholar 

  18. Wen B, Li H, Lu D, Song X, Zhang F, He Y et al. Genetic evidence supports demic diffusion of Han culture. Nature 2004; 431: 302–305.

    Article  CAS  PubMed  Google Scholar 

  19. Gan RJ, Pan SL, Mustavich LF, Qin ZD, Cai XY, Qian J et al. Pinghua population as an exception of Han Chinese's coherent genetic structure. J Hum Genet 2008; 53: 303–313.

    Article  PubMed  Google Scholar 

  20. Chen L, Qin S, Xie J, Tang J, Yang L, Shen W et al. Genetic polymorphism analysis of CYP2C19 in Chinese Han populations from different geographic areas of mainland China. Pharmacogenomics 2008; 9: 691–702.

    Article  CAS  PubMed  Google Scholar 

  21. Xiao ZS, Goldstein JA, Xie HG, Blaisdell J, Wang W, Jiang CH et al. Differences in the incidence of the CYP2C19 polymorphism affecting the S-mephenytoin phenotype in Chinese Han and Bai populations and identification of a new rare CYP2C19 mutant allele. J Pharmacol Exp Ther 1997; 281: 604–609.

    CAS  PubMed  Google Scholar 

  22. Sheng HH, Zeng AP, Zhu WX, Zhu RF, Li HM, Zhu ZD et al. Allelic distributions of CYP2D6 gene copy number variation in the Eastern Han Chinese population. Acta Pharmacol Sin 2007; 28: 279–286.

    Article  CAS  PubMed  Google Scholar 

  23. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 2003; 13: 2129–2141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goddard KA, Hopkins PJ, Hall JM, Witte JS . Linkage disequilibrium and allele-frequency distributions for 114 single-nucleotide polymorphisms in five populations. Am J Hum Genet 2000; 66: 216–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fuselli S, Dupanloup I, Frigato E, Cruciani F, Scozzari R, Moral P et al. Molecular diversity at the CYP2D6 locus in the Mediterranean region. Eur J Hum Genet 2004; 12: 916–924.

    Article  CAS  PubMed  Google Scholar 

  26. Hosking LK, Boyd PR, Xu CF, Nissum M, Cantone K, Purvis IJ et al. Linkage disequilibrium mapping identifies a 390 kb region associated with CYP2D6 poor drug metabolising activity. Pharmacogenomics J 2002; 2: 165–175.

    Article  CAS  PubMed  Google Scholar 

  27. de Bakker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, Altshuler D . Efficiency and power in genetic association studies. Nat Genet 2005; 37: 1217–1223.

    Article  CAS  PubMed  Google Scholar 

  28. Jose R, Chandrasekaran A, Sam SS, Gerard N, Chanolean S, Abraham BK et al. CYP2C9 and CYP2C19 genetic polymorphisms: frequencies in the south Indian population. Fundam Clin Pharmacol 2005; 19: 101–105.

    Article  CAS  PubMed  Google Scholar 

  29. Isaza C, Henao J, Martinez JH, Arias JC, Beltran L . Phenotype–genotype analysis of CYP2C19 in Colombian mestizo individuals. BMC Clin Pharmacol 2007; 7: 6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee SS, Lee SJ, Gwak J, Jung HJ, Thi-Le H, Song IS et al. Comparisons of CYP2C19 genetic polymorphisms between Korean and Vietnamese populations. Ther Drug Monit 2007; 29: 455–459.

    Article  CAS  PubMed  Google Scholar 

  31. Fukushima-Uesaka H, Saito Y, Maekawa K, Ozawa S, Hasegawa R, Kajio H et al. Genetic variations and haplotypes of CYP2C19 in a Japanese population. Drug Metab Pharmacokinet 2005; 20: 300–307.

    Article  PubMed  Google Scholar 

  32. Lee SY, Sohn KM, Ryu JY, Yoon YR, Shin JG, Kim JW . Sequence-based CYP2D6 genotyping in the Korean population. Ther Drug Monit 2006; 28: 382–387.

    Article  CAS  PubMed  Google Scholar 

  33. Aklillu E, Persson I, Bertilsson L, Johansson I, Rodrigues F, Ingelman-Sundberg M . Frequent distribution of ultrarapid metabolizers of debrisoquine in an ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles. J Pharmacol Exp Ther 1996; 278: 441–446.

    CAS  PubMed  Google Scholar 

  34. Naveen AT, Adithan C, Soya SS, Gerard N, Krishnamoorthy R . CYP2D6 genetic polymorphism in South Indian populations. Biol Pharm Bull 2006; 29: 1655–1658.

    Article  PubMed  Google Scholar 

  35. Garcia-Barcelo M, Chow LY, Kum Chiu HF, Wing YK, Shing Lee DT, Lam KL et al. Frequencies of defective CYP2C19 alleles in a Hong Kong Chinese population: detection of the rare allele CYP2C19*4. Clin Chem 1999; 45: 2273–2274.

    CAS  PubMed  Google Scholar 

  36. Ahmadi KR, Weale ME, Xue ZY, Soranzo N, Yarnall DP, Briley JD et al. A single-nucleotide polymorphism tagging set for human drug metabolism and transport. Nat Genet 2005; 37: 84–89.

    Article  CAS  PubMed  Google Scholar 

  37. Walton R, Kimber M, Rockett K, Trafford C, Kwiatkowski D, Sirugo G . Haplotype block structure of the cytochrome P450 CYP2C gene cluster on chromosome 10. Nat Genet 2005; 37: 915–916; author reply 916.

    Article  CAS  PubMed  Google Scholar 

  38. Yu A, Zhao C, Fan Y, Jang W, Mungall AJ, Deloukas P et al. Comparison of human genetic and sequence-based physical maps. Nature 2001; 409: 951–953.

    Article  CAS  PubMed  Google Scholar 

  39. Fisher RC, Scott EW . Role of PU.1 in hematopoiesis. Stem Cells 1998; 16: 25–37.

    Article  CAS  PubMed  Google Scholar 

  40. Schrem H, Klempnauer J, Borlak J . Liver-enriched transcription factors in liver function and development. Part II: the C/EBPs and D site-binding protein in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. Pharmacol Rev 2004; 56: 291–330.

    Article  CAS  PubMed  Google Scholar 

  41. Akiyama TE, Gonzalez FJ . Regulation of P450 genes by liver-enriched transcription factors and nuclear receptors. Biochim Biophys Acta 2003; 1619: 223–234.

    Article  CAS  PubMed  Google Scholar 

  42. Raucy JL, Allen SW . Recent advances in P450 research. Pharmacogenomics J 2001; 1: 178–186.

    Article  CAS  PubMed  Google Scholar 

  43. Cojocaru V, Winn PJ, Wade RC . The ins and outs of cytochrome P450s. Biochim Biophys Acta 2007; 1770: 390–401.

    Article  CAS  PubMed  Google Scholar 

  44. Seifert A, Tatzel S, Schmid RD, Pleiss J . Multiple molecular dynamics simulations of human p450 monooxygenase CYP2C9: the molecular basis of substrate binding and regioselectivity toward warfarin. Proteins 2006; 64: 147–155.

    Article  CAS  PubMed  Google Scholar 

  45. Blaisdell J, Jorge-Nebert LF, Coulter S, Ferguson SS, Lee SJ, Chanas B et al. Discovery of new potentially defective alleles of human CYP2C9. Pharmacogenetics 2004; 14: 527–537.

    Article  CAS  PubMed  Google Scholar 

  46. Wang JF, Wei DQ, Li L, Zheng SY, Li YX, Chou KC . 3D structure modeling of cytochrome P450 2C19 and its implication for personalized drug design. Biochem Biophys Res Commun 2007; 355: 513–519.

    Article  CAS  PubMed  Google Scholar 

  47. Wang JF, Wei DQ, Chen C, Li Y, Chou KC . Molecular modeling of two CYP2C19 SNPs and its implications for personalized drug design. Protein Pept Lett 2008; 15: 27–32.

    Article  PubMed  Google Scholar 

  48. Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE . Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell 2000; 5: 121–131.

    Article  CAS  PubMed  Google Scholar 

  49. Marez D, Legrand M, Sabbagh N, Lo-Guidice JM, Boone P, Broly F . An additional allelic variant of the CYP2D6 gene causing impaired metabolism of sparteine. Hum Genet 1996; 97: 668–670.

    Article  CAS  PubMed  Google Scholar 

  50. Tsuzuki D, Takemi C, Yamamoto S, Tamagake K, Imaoka S, Funae Y et al. Functional evaluation of cytochrome P450 2D6 with Gly42Arg substitution expressed in Saccharomyces cerevisiae. Pharmacogenetics 2001; 11: 709–718.

    Article  CAS  PubMed  Google Scholar 

  51. Yokota H, Tamura S, Furuya H, Kimura S, Watanabe M, Kanazawa I et al. Evidence for a new variant CYP2D6 allele CYP2D6J in a Japanese population associated with lower in vivo rates of sparteine metabolism. Pharmacogenetics 1993; 3: 256–263.

    Article  CAS  PubMed  Google Scholar 

  52. Szczesna-Skorupa E, Ahn K, Chen CD, Doray B, Kemper B . The cytoplasmic and N-terminal transmembrane domains of cytochrome P450 contain independent signals for retention in the endoplasmic reticulum. J Biol Chem 1995; 270: 24327–24333.

    Article  CAS  PubMed  Google Scholar 

  53. Tsuzuki D, Hichiya H, Okuda Y, Yamamoto S, Tamagake K, Shinoda S et al. Alteration in catalytic properties of human CYP2D6 caused by substitution of glycine-42 with arginine, lysine and glutamic acid. Drug Metab Pharmacokinet 2003; 18: 79–85.

    Article  CAS  PubMed  Google Scholar 

  54. Lahiri DK, Nurnberger Jr JI . A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 1991; 19: 5444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. International HapMap Consortium. The International HapMap Project. Nature 2003; 426: 789–796.

    Article  CAS  Google Scholar 

  56. Hersberger M, Marti-Jaun J, Rentsch K, Hanseler E . Rapid detection of the CYP2D6*3, CYP2D6*4, and CYP2D6*6 alleles by tetra-primer PCR and of the CYP2D6*5 allele by multiplex long PCR. Clin Chem 2000; 46 (8 Part 1): 1072–1077.

    CAS  PubMed  Google Scholar 

  57. Lovlie R, Daly AK, Molven A, Idle JR, Steen VM . Ultrarapid metabolizers of debrisoquine: characterization and PCR-based detection of alleles with duplication of the CYP2D6 gene. FEBS Lett 1996; 392: 30–34.

    Article  CAS  PubMed  Google Scholar 

  58. Ewing B, Hillier L, Wendl MC, Green P . Base-calling of automated sequencer traces using Phred. I. accuracy assessment. Genome Res 1998; 8: 175–185.

    Article  CAS  PubMed  Google Scholar 

  59. Ewing B, Green P . Base-calling of automated sequencer traces using Phred. II. error probabilities. Genome Res 1998; 8: 186–194.

    Article  CAS  PubMed  Google Scholar 

  60. Nickerson DA, Tobe VO, Taylor SL . PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res 1997; 25: 2745–2751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gordon D, Abajian C, Green P . Consed: a graphical tool for sequence finishing. Genome Res 1998; 8: 195–202.

    Article  CAS  PubMed  Google Scholar 

  62. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  PubMed  Google Scholar 

  63. Stephens M, Smith NJ, Donnelly P . A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68: 978–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stephens M, Scheet P . Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 2005; 76: 449–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bandelt HJ, Forster P, Rohl A . Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999; 16: 37–48.

    Article  CAS  PubMed  Google Scholar 

  66. Ramensky V, Bork P, Sunyaev S . Human non-synonymous SNPs: server and survey. Nucleic Acids Res 2002; 30: 3894–3900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sunyaev S, Ramensky V, Bork P . Towards a structural basis of human non-synonymous single nucleotide polymorphisms. Trends Genet 2000; 16: 198–200.

    Article  CAS  PubMed  Google Scholar 

  68. Sunyaev S, Ramensky V, Koch I, Lathe 3rd W, Kondrashov AS, Bork P . Prediction of deleterious human alleles. Hum Mol Genet 2001; 10: 591–597.

    Article  CAS  PubMed  Google Scholar 

  69. Arnold K, Bordoli L, Kopp J, Schwede T . The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006; 22: 195–201.

    Article  CAS  PubMed  Google Scholar 

  70. Schwede T, Kopp J, Guex N, Peitsch MC . SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 2003; 31: 3381–3385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Williams PA, Cosme J, Ward A, Angove HC, Matak Vinkovic D, Jhoti H . Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 2003; 424: 464–468.

    Article  CAS  PubMed  Google Scholar 

  72. Wada Y, Mitsuda M, Ishihara Y, Watanabe M, Iwasaki M, Asahi S . Important amino acid residues that confer CYP2C19 selective activity to CYP2C9. J Biochem 2008; 144: 323–333.

    Article  CAS  PubMed  Google Scholar 

  73. Binkowski TA, Naghibzadeh S, Liang J . CASTp: computed atlas of surface topography of proteins. Nucleic Acids Res 2003; 31: 3352–3355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Galson DL, Hensold JO, Bishop TR, Schalling M, D'Andrea AD, Jones C et al. Mouse beta-globin DNA-binding protein B1 is identical to a proto-oncogene, the transcription factor Spi-1/PU.1 and is restricted in expression to hematopoietic cells and the testis. Mol Cell Biol 1993; 13: 2929–2941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Miyata A, Yokoyama C, Ihara H, Bandoh S, Takeda O, Takahashi E et al. Characterization of the human gene (TBXAS1) encoding thromboxane synthase. Eur J Biochem 1994; 224: 273–279.

    Article  CAS  PubMed  Google Scholar 

  76. Jones NC, Rigby PW, Ziff EB . Trans-acting protein factors and the regulation of eukaryotic transcription: lessons from studies on DNA tumor viruses. Genes Dev 1988; 2: 267–281.

    Article  CAS  PubMed  Google Scholar 

  77. Kaling M, Kugler W, Ross K, Zoidl C, Ryffel GU . Liver-specific gene expression: a-activator-binding site, a promoter module present in vitellogenin and acute-phase genes. Mol Cell Biol 1991; 11: 93–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Osborne TF, Gil G, Brown MS, Kowal RC, Goldstein JL . Identification of promoter elements required for in vitro transcription of hamster 3-hydroxy-3-methylglutaryl coenzyme A reductase gene. Proc Natl Acad Sci USA 1987; 84: 3614–3618.

    Article  CAS  PubMed  Google Scholar 

  79. Pang YS, Wong LP, Lee TC, Mustafa AM, Mohamed Z, Lang CC . Genetic polymorphism of cytochrome P450 2C19 in healthy Malaysian subjects. Br J Clin Pharmacol 2004; 58: 332–335.

    Article  CAS  PubMed  Google Scholar 

  80. Scott SA, Edelmann L, Kornreich R, Erazo M, Desnick RJ . CYP2C9, CYP2C19 and CYP2D6 allele frequencies in the Ashkenazi Jewish population. Pharmacogenomics 2007; 8: 721–730.

    Article  CAS  PubMed  Google Scholar 

  81. Scordo MG, Caputi AP, D'Arrigo C, Fava G, Spina E . Allele and genotype frequencies of CYP2C9, CYP2C19 and CYP2D6 in an Italian population. Pharmacol Res 2004; 50: 195–200.

    Article  CAS  PubMed  Google Scholar 

  82. Aynacioglu AS, Sachse C, Bozkurt A, Kortunay S, Nacak M, Schroder T et al. Low frequency of defective alleles of cytochrome P450 enzymes 2C19 and 2D6 in the Turkish population. Clin Pharmacol Ther 1999; 66: 185–192.

    Article  CAS  PubMed  Google Scholar 

  83. Hamdy SI, Hiratsuka M, Narahara K, El-Enany M, Moursi N, Ahmed MS et al. Allele and genotype frequencies of polymorphic cytochromes P450 (CYP2C9, CYP2C19, CYP2E1) and dihydropyrimidine dehydrogenase (DPYD) in the Egyptian population. Br J Clin Pharmacol 2002; 53: 596–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ishiguro A, Kubota T, Sasaki H, Yamada Y, Iga T . Common mutant alleles of CYP2D6 causing the defect of CYP2D6 enzyme activity in a Japanese population. Br J Clin Pharmacol 2003; 55: 414–415.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lopez M, Guerrero J, Jung-Cook H, Alonso ME . CYP2D6 genotype and phenotype determination in a Mexican Mestizo population. Eur J Clin Pharmacol 2005; 61: 749–754.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We like to express our sincere thanks to Professor Jun Yu and Dr Xumin Wang (Beijing Institute of Genomics, CAS) for their valuable contributions. This work is supported by the Knowledge Innovation Program of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S N Hu or D-M Wang.

Additional information

Authors' contributions

SNH and DMW conceived and designed the experiments, QZ, XMY and QZY performed the experiments, QZ, XMY, HBL and LW analyzed the data. QZ and XMY drafted the paper. SNH and DMW supervised the research and revised the paper. All authors read and approved the final paper.

Supplementary information accompanies the paper on the The Pharmacogenomics Journal website (http://www.nature.com/tpj)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Q., Yu, X., Lin, H. et al. Genetic polymorphism, linkage disequilibrium, haplotype structure and novel allele analysis of CYP2C19 and CYP2D6 in Han Chinese. Pharmacogenomics J 9, 380–394 (2009). https://doi.org/10.1038/tpj.2009.31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2009.31

Keywords

This article is cited by

Search

Quick links