Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Discrete opioid gene expression impairment in the human fetal brain associated with maternal marijuana use

Abstract

Fetal development is a period sensitive to environmental influences such as maternal drug use. The most commonly used illicit drug by pregnant women is marijuana. The present study investigated the effects of in utero marijuana exposure on expression levels of opioid-related genes in the human fetal forebrain in light of the strong interaction between the cannabinoid and opioid systems. The study group consisted of 42 midgestation fetuses from saline-induced voluntary abortions. The opioid peptide precursors (preprodynorphin and preproenkephalin (PENK)) and receptor (mu, kappa and delta) mRNA expression were assessed in distinct brain regions. The effect of prenatal cannabis exposure was analyzed by multiple regression controlling for confounding variables (maternal alcohol and cigarette use, fetal age, sex, growth measure and post-mortem interval). Prenatal cannabis exposure was significantly associated with increased mu receptor expression in the amygdala, reduced kappa receptor mRNA in mediodorsal thalamic nucleus and reduced preproenkephalin expression in the caudal putamen. Prenatal alcohol exposure primarily influenced the kappa receptor mRNA with reduced levels in the amygdala, claustrum, putamen and insula cortex. No significant effect of prenatal nicotine exposure could be discerned in the present study group. These results indicate that maternal cannabis and alcohol exposure during pregnancy differentially impair opioid-related genes in distinct brain circuits that may have long-term effects on cognitive and emotional behaviors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. SAMHSA. Results from the 2001 National Household Survey on Drug Abuse. Substance Abuse and Mental Health Service Administration: Rockville, MD, 2002.

  2. Chasnoff IJ, McGourty RF, Bailey GW, Hutchins E, Lightfoot SO, Pawson LL et al. The 4P's plus((c)) screen for substance use in pregnancy: clinical application and outcomes. J Perinatol 2005; 25: 368–374.

    Article  Google Scholar 

  3. Mato S, Del Olmo E, Pazos A . Ontogenetic development of cannabinoid receptor expression and signal transduction functionality in the human brain. Eur J Neurosci 2003; 17: 1747–1754.

    Article  Google Scholar 

  4. Berrendero F, Garcia-Gil L, Hernandez ML, Romero J, Cebeira M, de Miguel R et al. Localization of mRNA expression and activation of signal transduction mechanisms for cannabinoid receptor in rat brain during fetal development. Development 1998; 125: 3179–3188.

    CAS  PubMed  Google Scholar 

  5. Pertwee RG . Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 1997; 74: 129–180.

    CAS  PubMed  Google Scholar 

  6. De Petrocellis L, Cascio MG, Di Marzo V . The endocannabinoid system: a general view and latest additions. Br J Pharmacol 2004; 141: 765–774.

    Article  CAS  Google Scholar 

  7. Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR et al. Cannabinoid receptor localization in brain. Proc Natl Acad Sci USA 1990; 87: 1932–1936.

    Article  CAS  Google Scholar 

  8. Wang X, Dow-Edwards D, Keller E, Hurd YL . Preferential limbic expression of the cannabinoid receptor mRNA in the human fetal brain. Neuroscience 2003; 118: 681–694.

    Article  CAS  Google Scholar 

  9. Cossu G, Ledent C, Fattore L, Imperato A, Bohme GA, Parmentier M et al. Cannabinoid CB1 receptor knockout mice fail to self-administer morphine but not other drugs of abuse. Behav Brain Res 2001; 118: 61–65.

    Article  CAS  Google Scholar 

  10. Valverde O, Noble F, Beslot F, Dauge V, Fournie-Zaluski MC, Roques BP . Delta9-tetrahydrocannabinol releases and facilitates the effects of endogenous enkephalins: reduction in morphine withdrawal syndrome without change in rewarding effect. Eur J Neurosci 2001; 13: 1816–1824.

    Article  CAS  Google Scholar 

  11. Ghozland S, Matthes HW, Simonin F, Filliol D, Kieffer BL, Maldonado R . Motivational effects of cannabinoids are mediated by mu-opioid and kappa-opioid receptors. J Neurosci 2002; 22: 1146–1154.

    Article  CAS  Google Scholar 

  12. Diana M, Melis M, Gessa GL . Increase in meso-prefrontal dopaminergic activity after stimulation of CB1 receptors by cannabinoids. Eur J Neurosci 1998; 10: 2825–2830.

    Article  CAS  Google Scholar 

  13. Hermann H, Marsicano G, Lutz B . Coexpression of the cannabinoid receptor type 1 with dopamine and serotonin receptors in distinct neuronal subpopulations of the adult mouse forebrain. Neuroscience 2002; 109: 451–460.

    Article  CAS  Google Scholar 

  14. Corchero J, Avila MA, Fuentes JA, Manzanares J . Delta-9-Tetrahydrocannabinol increases prodynorphin and proenkephalin gene expression in the spinal cord of the rat. Life Sci 1997; 61: PL39–PL43.

    Article  CAS  Google Scholar 

  15. Gerrits MA, Lesscher HB, van Ree JM . Drug dependence and the endogenous opioid system. Eur Neuropsychopharmacol 2003; 13: 424–434.

    Article  CAS  Google Scholar 

  16. Akil H, Watson SJ, Young E, Lewis ME, Khachaturian H, Walker JM . Endogenous opioids: biology and function. Annu Rev Neurosci 1984; 7: 223–255.

    Article  CAS  Google Scholar 

  17. Waldhoer M, Bartlett SE, Whistler JL . Opioid receptors. Annu Rev Biochem 2004; 73: 953–990.

    Article  CAS  Google Scholar 

  18. Bailey CP, Connor M . Opioids: cellular mechanisms of tolerance and physical dependence. Curr Opin Pharmacol 2005; 5: 60–68.

    Article  CAS  Google Scholar 

  19. Navarro M, Rubio P, de Fonseca FR . Behavioural consequences of maternal exposure to natural cannabinoids in rats. Psychopharmacology (Berlin) 1995; 122: 1–14.

    Article  CAS  Google Scholar 

  20. Goldschmidt L, Day NL, Richardson GA . Effects of prenatal marijuana exposure on child behavior problems at age 10. Neurotoxicol Teratol 2000; 22: 325–336.

    Article  CAS  Google Scholar 

  21. Fried PA . Conceptual issues in behavioral teratology and their application in determining long-term sequelae of prenatal marihuana exposure. J Child Psychol Psychiatry 2002; 43: 81–102.

    Article  CAS  Google Scholar 

  22. Wang X, Dow-Edwards D, Anderson V, Minkoff H, Hurd YL . In utero marijuana exposure associated with abnormal amygdala dopamine D(2) gene expression in the human fetus. Biol Psychiatry 2004; 56: 909–915.

    Article  CAS  Google Scholar 

  23. Wright A, Walker J . Drugs of abuse in pregnancy. Best Pract Res Clin Obstet Gynaecol 2001; 15: 987–998.

    Article  CAS  Google Scholar 

  24. Bennett AD . Perinatal substance abuse and the drug-exposed neonate. Adv Nurse Pract 1999; 7: 32–36; quiz 37–38.

    CAS  PubMed  Google Scholar 

  25. Mattson SN, Riley EP . A review of the neurobehavioral deficits in children with fetal alcohol syndrome or prenatal exposure to alcohol. Alcohol Clin Exp Res 1998; 22: 279–294.

    Article  CAS  Google Scholar 

  26. Roebuck TM, Mattson SN, Riley EP . Behavioral and psychosocial profiles of alcohol-exposed children. Alcohol Clin Exp Res 1999; 23: 1070–1076.

    Article  CAS  Google Scholar 

  27. Goldschmidt L, Richardson GA, Stoffer DS, Geva D, Day NL . Prenatal alcohol exposure and academic achievement at age six: a nonlinear fit. Alcohol Clin Exp Res 1996; 20: 763–770.

    Article  CAS  Google Scholar 

  28. Wang X, Dow-Edwards D, Keller E, Hurd YL . Preferential limbic expression of the cannabinoid receptor mRNA in the human fetal brain. Neuroscience 2003; 118: 681–694.

    Article  CAS  Google Scholar 

  29. Perez-Rosado A, Manzanares J, Fernandez-Ruiz J, Ramos JA . Prenatal Delta(9)-tetrahydrocannabinol exposure modifies proenkephalin gene expression in the fetal rat brain: sex-dependent differences. Brain Res Dev Brain Res 2000; 120: 77–81.

    Article  CAS  Google Scholar 

  30. Corchero J, Garcia-Gil L, Manzanares J, Fernandez-Ruiz JJ, Fuentes JA, Ramos JA . Perinatal delta9-tetrahydrocannabinol exposure reduces proenkephalin gene expression in the caudate-putamen of adult female rats. Life Sci 1998; 63: 843–850.

    Article  CAS  Google Scholar 

  31. Manzanares J, Corchero J, Romero J, Fernandez-Ruiz JJ, Ramos JA, Fuentes JA . Chronic administration of cannabinoids regulates proenkephalin mRNA levels in selected regions of the rat brain. Brain Res Mol Brain Res 1998; 55: 126–132.

    Article  CAS  Google Scholar 

  32. Corchero J, Romero J, Berrendero F, Fernandez-Ruiz J, Ramos JA, Fuentes JA et al. Time-dependent differences of repeated administration with Delta9- tetrahydrocannabinol in proenkephalin and cannabinoid receptor gene expression and G-protein activation by mu-opioid and CB1-cannabinoid receptors in the caudate-putamen. Brain Res Mol Brain Res 1999; 67: 148–157.

    Article  CAS  Google Scholar 

  33. Perez-Rosado A, Gomez M, Manzanares J, Ramos JA, Fernandez-Ruiz J . Changes in prodynorphin and POMC gene expression in several brain regions of rat fetuses prenatally exposed to Delta(9)-tetrahydrocannabinol. Neurotox Res 2002; 4: 211–218.

    Article  CAS  Google Scholar 

  34. Vela G, Martin S, Garcia-Gil L, Crespo JA, Ruiz-Gayo M, Javier Fernandez-Ruiz J et al. Maternal exposure to delta9-tetrahydrocannabinol facilitates morphine self-administration behavior and changes regional binding to central mu opioid receptors in adult offspring female rats. Brain Res 1998; 807: 101–109.

    Article  CAS  Google Scholar 

  35. Corchero J, Oliva JM, Garcia-Lecumberri C, Martin S, Ambrosio E, Manzanares J . Repeated administration with Delta9-tetrahydrocannabinol regulates mu-opioid receptor density in the rat brain. J Psychopharmacol 2004; 18: 54–58.

    Article  CAS  Google Scholar 

  36. Rosin A, Lindholm S, Franck J, Georgieva J . Downregulation of kappa opioid receptor mRNA levels by chronic ethanol and repetitive cocaine in rat ventral tegmentum and nucleus accumbens. Neurosci Lett 1999; 275: 1–4.

    Article  CAS  Google Scholar 

  37. Kovacs KM, Szakall I, O'Brien D, Wang R, Vinod KY, Saito M et al. Decreased oral self-administration of alcohol in kappa-opioid receptor knock-out mice. Alcohol Clin Exp Res 2005; 29: 730–738.

    Article  CAS  Google Scholar 

  38. Beadles-Bohling AS, Wiren KM . Alteration of kappa-opioid receptor system expression in distinct brain regions of a genetic model of enhanced ethanol withdrawal severity. Brain Res 2005; 1046: 77–89.

    Article  CAS  Google Scholar 

  39. Holter SM, Henniger MS, Lipkowski AW, Spanagel R . Kappa-opioid receptors and relapse-like drinking in long-term ethanol-experienced rats. Psychopharmacology (Berlin) 2000; 153: 93–102.

    Article  CAS  Google Scholar 

  40. Baer JS, Barr HM, Bookstein FL, Sampson PD, Streissguth AP . Prenatal alcohol exposure and family history of alcoholism in the etiology of adolescent alcohol problems. J Stud Alcohol 1998; 59: 533–543.

    Article  CAS  Google Scholar 

  41. Mathieu-Kia AM, Besson MJ . Repeated administration of cocaine, nicotine and ethanol: effects on preprodynorphin, preprotachykinin A and preproenkephalin mRNA expression in the dorsal and the ventral striatum of the rat. Brain Res Mol Brain Res 1998; 54: 141–151.

    Article  CAS  Google Scholar 

  42. Fadda P, Tronci S, Colombo G, Fratta W . Differences in the opioid system in selected brain regions of alcohol-preferring and alcohol-nonpreferring rats. Alcohol Clin Exp Res 1999; 23: 1296–1305.

    Article  CAS  Google Scholar 

  43. Pomerleau OF . Endogenous opioids and smoking: a review of progress and problems. Psychoneuroendocrinology 1998; 23: 115–130.

    Article  CAS  Google Scholar 

  44. Mathieu-Kia AM, Kellogg SH, Butelman ER, Kreek MJ . Nicotine addiction: insights from recent animal studies. Psychopharmacology (Berlin) 2002; 162: 102–118.

    Article  CAS  Google Scholar 

  45. Bodnar RJ, Klein GE . Endogenous opiates and behavior: 2003. Peptides 2004; 25: 2205–2256.

    Article  CAS  Google Scholar 

  46. Aggleton JP . The contribution of the amygdala to normal and abnormal emotional states. Trends Neurosci 1993; 16: 328–333.

    Article  CAS  Google Scholar 

  47. Everitt BJ, Parkinson JA, Olmstead MC, Arroyo M, Robledo P, Robbins TW . Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems. Ann N Y Acad Sci 1999; 877: 412–438.

    Article  CAS  Google Scholar 

  48. Fried PA . Behavioral outcomes in preschool and school-age children exposed prenatally to marijuana: a review and speculative interpretation. NIDA Res Monogr 1996; 164: 242–260.

    CAS  PubMed  Google Scholar 

  49. Richardson GA, Ryan C, Willford J, Day NL, Goldschmidt L . Prenatal alcohol and marijuana exposure. Effects on neuropsychological outcomes at 10 years. Neurotoxicol Teratol 2002; 24: 309–320.

    Article  CAS  Google Scholar 

  50. Willford JA, Richardson GA, Leech SL, Day NL . Verbal and visuospatial learning and memory function in children with moderate prenatal alcohol exposure. Alcohol Clin Exp Res 2004; 28: 497–507.

    Article  Google Scholar 

  51. Goldschmidt L, Richardson GA, Cornelius MD, Day NL . Prenatal marijuana and alcohol exposure and academic achievement at age 10. Neurotoxicol Teratol 2004; 26: 521–532.

    Article  CAS  Google Scholar 

  52. Fried PA, Smith AM . A literature review of the consequences of prenatal marihuana exposure. An emerging theme of a deficiency in aspects of executive function. Neurotoxicol Teratol 2001; 23: 1–11.

    Article  CAS  Google Scholar 

  53. Brana C, Charron G, Aubert I, Carles D, Martin-Negrier ML, Trouette H et al. Ontogeny of the striatal neurons expressing neuropeptide genes in the human fetus and neonate. J Comp Neurol 1995; 360: 488–505.

    Article  CAS  Google Scholar 

  54. Mailleux P, Verslype M, Preud'homme X, Vanderhaeghen JJ . Activation of multiple transcription factor genes by tetrahydrocannabinol in rat forebrain. Neuroreport 1994; 5: 1265–1268.

    Article  CAS  Google Scholar 

  55. Casu MA, Pisu C, Sanna A, Tambaro S, Spada GP, Mongeau R et al. Effect of delta9-tetrahydrocannabinol on phosphorylated CREB in rat cerebellum: an immunohistochemical study. Brain Res 2005; 1048: 41–47.

    Article  CAS  Google Scholar 

  56. Hurd YL, Suzuki M, Sedvall GC . D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. J Chem Neuroanat 2001; 22: 127–137.

    Article  CAS  Google Scholar 

  57. Feess-Higgins A, Larroche J-C . Development of the Human Foetal Brain. An anatomical atlas: Masson, Paris, 1987.

    Google Scholar 

Download references

Acknowledgements

This study was supported by Grants from the National Institutes of Health (NIDA DA12030) and the Swedish Scientific Council (11252). We thank Dr Diane Ashton for help with access to the Obstetrics and Gynecology clinic. We also thank Alexandra Guilliume and Dionne Dunkley for helping with maternal interviews and fetal brain collection and Alexandra Tylec for invaluable technical assistance with in situ hybridization experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y L Hurd.

Additional information

Duality of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Dow-Edwards, D., Anderson, V. et al. Discrete opioid gene expression impairment in the human fetal brain associated with maternal marijuana use. Pharmacogenomics J 6, 255–264 (2006). https://doi.org/10.1038/sj.tpj.6500375

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500375

Keywords

This article is cited by

Search

Quick links