Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

NAT2 gene diversity and its evolutionary trajectory in the Americas

Abstract

N-acetyltransferase 2 (NAT2) is responsible for metabolizing xenobiotics; NAT2 polymorphisms lead to three phenotypes: rapid, intermediate and slow acetylators. We aimed to investigate NAT2 diversity in Native Americans. NAT2 exon 2 was sequenced for 286 individuals from 21 populations (Native American and American Mestizos). Excluding the basal/rapid haplotype NAT2*4, the most frequent haplotypes are NAT2*5B (35.95%) in hunter-gatherers and NAT2*7B (20.61%) and NAT2*5B (19.08%) in agriculturalists that were related to the slow phenotype. A new haplotype was identified in two Amerindians. Data from the ~44 kb region surrounding NAT2 in 819 individuals from Africa, East-Asia, Europe and America were used in additional analyses. No significant differences in the acetylator NAT2 haplotype and phenotype distributions were found between Native American populations practicing farming and/or herding and those practicing hunting and gathering, probably because of the absence or weakness of selection pressures and presence of demographic and random processes preventing detection of any selection signal.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Blum M, Grant DM, McBride W, Heim M, Meyer UA . Human arylamine N-acetyltransferase genes: isolation, chromosomal localization, and functional expression. DNA Cell Biol 1990; 9: 193–203.

    Article  CAS  PubMed  Google Scholar 

  2. Fuselli S, Gilman RH, Chanock SJ, Bonatto SL, De Stefano G, Evans CA et al. Analysis of nucleotide diversity of NAT2 coding region reveals homogeneity across Native American populations and high intra-population diversity. Pharmacogenomics J 2007; 7: 144–152.

    Article  CAS  PubMed  Google Scholar 

  3. Sabbagh A, Langaney A, Darlu P, Gérard N, Krishnamoorthy R, Poloni ES . Worldwide distribution of NAT2 diversity: implications for NAT2 evolutionary history. BMC Genet 2008; 9: e21.

    Article  Google Scholar 

  4. Mahasneh A, Jubaili A, El Bateiha A, Al-Ghazo M, Matalka I, Malkawi M . Polymorphisms of arylamine N-acetyltransferase2 and risk of lung and colorectal cancer. Genet Mol Biol 2012; 35: 725–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Evans DA, Manley KA, Mc KV . Genetic control of isoniazid metabolism in man. Br Med J 1960a; 2: 485–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Evans DA, Storey PB, Wittstadt FB, Manley KA . The determination of the isoniazid inactivator phenotype. Am Rev Respir Dis 1960b; 82: 853–861.

    CAS  PubMed  Google Scholar 

  7. Weber WW . The Acetylator Genes and Drug Response. Oxford University Press: New York, 1987.

    Google Scholar 

  8. Grimwade K, Gilks C . Cotrimoxazole prophylaxis in adults infected with HIV in low-income countries. Curr Opin Infect Dis 2001; 14: 507–512.

    Article  CAS  PubMed  Google Scholar 

  9. Sabbagh A, Darlu P, Crouau-Roy B, Poloni ES . Arylamine N-acetyltransferase 2 (NAT2) genetic diversity and traditional subsistence: a worldwide population survey. PLoS One 2011; 6: e18507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ruiz JD, Martínez C, Anderson K, Gross M, Lang NP, García-Martín E et al. The differential effect of NAT2 variant alleles permits refinement in phenotype inference and identifies a very slow acetylation genotype. PLoS One 2012; 7: e44629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang YS, Chern HD, Su WJ, Wu JC, Lai SL, Yang SY et al. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology 2002; 35: 883–889.

    Article  CAS  PubMed  Google Scholar 

  12. Santos NP, Callegari-Jacques SM, Ribeiro Dos Santos AK, Silva CA, Vallinoto AC, Fernandes DC et al. N-acetyl transferase 2 and cytochrome P450 2E1 genes and isoniazid-induced hepatotoxicity in Brazilian patients. Int J Tuberc Lung Dis 2013; 17: 499–504.

    Article  CAS  PubMed  Google Scholar 

  13. Patin E, Barreiro LB, Sabeti PC, Austerlitz F, Luca F, Sajantila A et al. Deciphering the ancient and complex evolutionary history of human arylamine N-acetyltransferase genes. Am J Hum Genet 2006; 78: 423–436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Diamond J . Evolution, consequences and future of plant and animal domestication. Nature 2002; 418: 700–707.

    Article  CAS  PubMed  Google Scholar 

  15. Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA et al. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 2005; 81: 341–354.

    Article  CAS  PubMed  Google Scholar 

  16. Salzano FM, Bortolini MC . Evolution and Genetics of Latin American Populations. Cambridge University Press: Cambridge, 2002.

    Google Scholar 

  17. Rasmussen M, Anzick SL, Waters MR, Skoglund P, DeGiorgio M, Stafford TW Jr et al. The genome of a Late Pleistocene human from a Clovis burial site in western Montana. Nature 2014; 506: 225–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Salzano FM . Molecular variability in Amerindians: widespread but uneven information. An Acad Bras Cienc 2002; 74: 223–263.

    Article  CAS  PubMed  Google Scholar 

  19. Reich D, Patterson N, Campbell D, Tandon A, Mazieres S, Ray N et al. Reconstructing Native American population history. Nature 2012; 488: 370–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stephens M, Smith NJ, Donnelly P . A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68: 978–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stephens M, Scheet P . Accounting for decay of linkage disequilibrium in haplotype inference and missing data imputation. Am J Hum Genet 2005; 76: 449–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bandelt H-J, Forster P, Röhl A . Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999; 16: 37–48.

    Article  CAS  PubMed  Google Scholar 

  23. Polzin T, Daneschmand SV . On Steiner trees and minimum spanning trees in hypergraphs. Operat Res Lett 2003; 31: 12–20.

    Article  Google Scholar 

  24. Weir BS, Cockerham CC . Estimating F-statistics for the analysis of population structure. Evolution 1984; 38: 1358–1370.

    CAS  PubMed  Google Scholar 

  25. Excoffier L, Smouse PE, Quattro JM . Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 1992; 131: 479–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Weir BS . The second National Research Council report on forensic DNA evidence. Am J Hum Genet 1996; 59: 497–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Excoffier L, Lischer HEL . Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 2010; 10: 564–567.

    Article  Google Scholar 

  28. McClelland EK, Ming TJ, Tabata A, Kaukinen KH, Beacham TD, Withler RE et al. Patterns of selection and allele diversity of class I and class II major histocompatibility loci across the species range of sockeye salmon (Oncorhynchusnerka. Mol Ecol 2013; 22: 4783–4800.

    Article  CAS  PubMed  Google Scholar 

  29. Teixeira RL, Morato RG, Cabello PH . Genetic polymorphisms of NAT2, CYP2E1 and GST enzymes and the occurrence of antituberculosis drug-induced hepatitis in Brazilian TB patients. Mem Inst Oswaldo Cruz 2011; 106: 716–724.

    Article  CAS  PubMed  Google Scholar 

  30. Ramallo V, Bisso-Machado R, Bravi C, Coble MD, Salzano FM, Hünemeier T et al. Demographic expansions in South America: enlightening a complex scenario with genetic and linguistic data. Am J Phys Anthropol 2013; 150: 453–463.

    Article  PubMed  Google Scholar 

  31. Tarazona-Santos E, Carvalho-Silva DR, Pettener D, Luiselli D, De Stefano GF, Labarga CM et al. Genetic differentiation in South Amerindians is related to environmental and cultural diversity: evidence from the Y chromosome. Am J Hum Genet 2001; 68: 1485–1496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Acuña-Alonzo V, Flores-Dorantes T, Kruit JK, Villarreal-Molina T, Arellano-Campos O, Hünemeier T et al. A functional ABCA1 gene variant is associated with low HDL-cholesterol levels and shows evidence of positive selection in Native Americans. Hum Mol Genet 2010; 19: 2877–2885.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hünemeier T, Amorim CE, Azevedo S, Contini V, Acuña-Alonzo V, Rothhammer F et al. Evolutionary responses to a constructed niche: ancient Mesoamericans as a model of gene-culture coevolution. PLoS One 2012; 7: e38862.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the individuals who donated the samples analyzed here and to the Fundação Nacional do Índio (FUNAI) for logistic support in the Brazilian sample collections. We thank Sandro L Bonatto for donating the Siberian Eskimo samples. We are also grateful to Michele Aramburu Serafini for technical assistance, Luciana Tovo-Rodrigues for information about the software used and Sidia M Callegari-Jacques and Diego Rovaris for help with the statistical analysis. Financial support was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul, Programa de Apoio a Núcleos de Excelência (FAPERGS/PRONEX). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M C Bortolini.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisso-Machado, R., Ramallo, V., Paixão-Côrtes, V. et al. NAT2 gene diversity and its evolutionary trajectory in the Americas. Pharmacogenomics J 16, 559–565 (2016). https://doi.org/10.1038/tpj.2015.72

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2015.72

This article is cited by

Search

Quick links