Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Polygenic inheritance of paclitaxel-induced sensory peripheral neuropathy driven by axon outgrowth gene sets in CALGB 40101 (Alliance)

Abstract

Peripheral neuropathy is a common dose-limiting toxicity for patients treated with paclitaxel. For most individuals, there are no known risk factors that predispose patients to the adverse event, and pathogenesis for paclitaxel-induced peripheral neuropathy is unknown. Determining whether there is a heritable component to paclitaxel-induced peripheral neuropathy would be valuable in guiding clinical decisions and may provide insight into treatment of and mechanisms for the toxicity. Using genotype and patient information from the paclitaxel arm of CALGB 40101 (Alliance), a phase III clinical trial evaluating adjuvant therapies for breast cancer in women, we estimated the variance in maximum grade and dose at first instance of sensory peripheral neuropathy. Our results suggest that paclitaxel-induced neuropathy has a heritable component, driven in part by genes involved in axon outgrowth. Disruption of axon outgrowth may be one of the mechanisms by which paclitaxel treatment results in sensory peripheral neuropathy in susceptible patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Rowinsky EK, Donehower RC . Paclitaxel (taxol). N Engl J Med 1995; 332: 1004–1014.

    Article  CAS  Google Scholar 

  2. Lee JJ, Swain SM . Peripheral neuropathy induced by microtubule-stabilizing agents. J Clin Oncol 2006; 24: 1633–1642.

    Article  CAS  Google Scholar 

  3. Donehower RC, Rowinsky EK, Grochow LB, Longnecker SM, Ettinger DS . Phase I trial of taxol in patients with advanced cancer. Cancer Treat Rep 1987; 71: 1171–1177.

    CAS  PubMed  Google Scholar 

  4. Postma TJ, Vermorken JB, Liefting AJ, Pinedo HM, Heimans JJ . Paclitaxel-induced neuropathy. Ann Oncol 1995; 6: 489–494.

    Article  CAS  Google Scholar 

  5. Rowinsky EK, Chaudhry V, Cornblath DR, Donehower RC . Neurotoxicity of taxol. J Natl Cancer Inst Monogr 1993; 15: 107–115.

    Google Scholar 

  6. Rowinsky EK, Eisenhauer EA, Chaudhry V, Arbuck SG, Donehower RC . Clinical toxicities encountered with paclitaxel (Taxol). Semin Oncol 1993; 20: 1–15.

    CAS  PubMed  Google Scholar 

  7. Lipton RB, Apfel SC, Dutcher JP, Rosenberg R, Kaplan J, Berger A et al. Taxol produces a predominantly sensory neuropathy. Neurology 1989; 39: 368–373.

    Article  CAS  Google Scholar 

  8. Flatters SJ, Bennett GJ . Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain 2006; 122: 245–257.

    Article  CAS  Google Scholar 

  9. Leandro-Garcia LJ, Leskela S, Jara C, Green H, Avall-Lundqvist E, Wheeler HE et al. Regulatory polymorphisms in β-tubulin IIa are associated with paclitaxel-induced peripheral neuropathy. Clin Cancer Res 2012; 18: 4441–4448.

    Article  CAS  Google Scholar 

  10. Leskela S, Jara C, Leandro-Garcia LJ, Martinez A, Garcia-Donas J, Hernando S et al. Polymorphisms in cytochromes P450 2C8 and 3A5 are associated with paclitaxel neurotoxicity. Pharmacogenomics J 2011; 11: 121–129.

    Article  CAS  Google Scholar 

  11. Sissung TM, Mross K, Steinberg SM, Behringer D, Figg WD, Sparreboom A et al. Association of ABCB1 genotypes with paclitaxel-mediated peripheral neuropathy and neutropenia. Eur J Cancer 2006; 42: 2893–2896.

    Article  CAS  Google Scholar 

  12. Bergmann TK, Green H, Brasch-Andersen C, Mirza MR, Herrstedt J, Holund B et al. Retrospective study of the impact of pharmacogenetic variants on paclitaxel toxicity and survival in patients with ovarian cancer. Eur J Clin Pharmacol 2011; 67: 693–700.

    Article  CAS  Google Scholar 

  13. Ofverholm A, Einbeigi Z, Manouchehrpour S, Albertsson P, Skrtic S, Enerback C . The ABCB1 3435 T allele does not increase the risk of paclitaxel-induced neurotoxicity. Oncol Lett 2010; 1: 151–154.

    Article  Google Scholar 

  14. Baldwin RM, Owzar K, Zembutsu H, Chhibber A, Kubo M, Jiang C et al. A genome-wide association study identifies novel loci for paclitaxel-induced sensory peripheral neuropathy in CALGB 40101. Clin Cancer Res 2012; 18: 5099–5109.

    Article  CAS  Google Scholar 

  15. Schneider BP, Li L, Miller K, Flockhart DA, Radovich M, Hancock BA et al. Genetic associations with taxane-induced neuropathy by a genome-wide association study in E5103. J Clin Oncol 2011; 29 Suppl: 1000.

    Article  Google Scholar 

  16. Bergmann TK, Vach W, Feddersen S, Eckhoff L, Green H, Herrstedt J et al. GWAS-based association between RWDD3 and TECTA variants and paclitaxel induced neuropathy could not be confirmed in Scandinavian ovarian cancer patients. Acta Oncol 2013; 52: 871–874.

    Article  CAS  Google Scholar 

  17. Motsinger-Reif AA, Jorgenson E, Relling MV, Kroetz DL, Weinshilboum R, Cox NJ et al. Genome-wide association studies in pharmacogenomics: successes and lessons. Pharmacogenet Genomics 2010; 23: 389–394.

    Google Scholar 

  18. Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ . Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 2006; 368: 704.

    Article  Google Scholar 

  19. Lee SH, Wray NR, Goddard ME, Visscher PM . Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet 2011; 88: 294–305.

    Article  Google Scholar 

  20. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet 2010; 42: 565–569.

    Article  CAS  Google Scholar 

  21. Li Y, Willer C, Sanna S, Abecasis G . Genotype imputation. Annu Rev Genomics Hum Genet 2009; 10: 387–406.

    Article  CAS  Google Scholar 

  22. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR . MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 2010; 34: 816–834.

    Article  Google Scholar 

  23. Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA et al. A map of human genome variation from population-scale sequencing. Nature 2010; 467: 1061–1073.

    Article  Google Scholar 

  24. Shulman LN, Cirrincione CT, Berry DA, Becker HP, Perez EA, O’Regan RO et al. Six cycles of doxorubicin and cyclophosphamide or paclitaxel are not superior to 4 cycles as adjuvant chemotherapy for breast cancer in women with 0–3 positive axillary nodes: CALGB 40101. J Clin Oncol 2012; 30: 4071–4076.

    Article  CAS  Google Scholar 

  25. Muggia FM, Braly PS, Brady MF, Sutton G, Niemann TH, Lentz SL et al. Phase III randomized study of cisplatin versus paclitaxel versus cisplatin and paclitaxel in patients with suboptimal stage III or IV ovarian cancer: a gynecologic oncology group study. J Clin Oncol 2000; 18: 106–115.

    Article  CAS  Google Scholar 

  26. Perez EA, Vogel CL, Irwin DH, Kirshner JJ, Patel R . Multicenter phase II trial of weekly paclitaxel in women with metastatic breast cancer. J Clin Oncol 2001; 19: 4216–4223.

    Article  CAS  Google Scholar 

  27. Bouzigon E, Ulgen A, Dizier MH, Siroux V, Lathrop M, Kauffmann F et al. Evidence for a pleiotropic QTL on chromosome 5q13 influencing both time to asthma onset and asthma score in French EGEA families. Hum Genet 2007; 121: 711–719.

    Article  Google Scholar 

  28. Dickson MR, Li J, Wiener HW, Perry RT, Blacker D, Bassett SS et al. A genomic scan for age at onset of Alzheimer's disease in 437 families from the NIMH Genetic Initiative. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 784–792.

    Article  Google Scholar 

  29. Hunt KJ, Lehman DM, Arya R, Fowler S, Leach RJ, Goring HH et al. Genome-wide linkage analyses of type 2 diabetes in Mexican Americans: the San Antonio Family Diabetes/Gallbladder Study. Diabetes 2005; 54: 2655–2662.

    Article  CAS  Google Scholar 

  30. Therneau TM A package for survival analysis in S. R package version 2.37-7, 2014, http://CRAN.R-project.org/package=survival.

  31. Therneau TM, Grambsch PM . Modeling Survival Data: Extending the Cox Model. Springer-Verlag: New York, NY, USA, 2000.

    Book  Google Scholar 

  32. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25: 25–29.

    Article  CAS  Google Scholar 

  33. Timmerman V Inherited peripheral neuropathies mutation database 2011. http://www.molgen.ua.ac.be/cmtmutations/Home/Default.cfm.

  34. Oshiro C, Marsh S, McLeod H, Carrillo M, Klein T, Altman R . Taxane pathway. Pharmacogenet Genomics 2009; 19: 979–983.

    Article  CAS  Google Scholar 

  35. Smigielski EM, Sirotkin K, Ward M, Sherry ST . dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res 2000; 28: 352–355.

    Article  CAS  Google Scholar 

  36. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  Google Scholar 

  37. Pruitt KD, Harrow J, Harte RA, Wallin C, Diekhans M, Maglott DR et al. The consensus coding sequence (CCDS) project: identifying a common protein-coding gene set for the human and mouse genomes. Genome Res 2009; 19: 1316–1323.

    Article  CAS  Google Scholar 

  38. Bush WS, Dudek SM, Ritchie MD . Biofilter: a knowledge-integration system for the multi-locus analysis of genome-wide association studies. Pac Symp Biocomput 2009; 14: 368–379.

    Google Scholar 

  39. Yang J, Lee SH, Goddard ME, Visscher PM . GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 2011; 88: 76–82.

    Article  CAS  Google Scholar 

  40. Yang J, Manolio TA, Pasquale LR, Boerwinkle E, Caporaso N, Cunningham JM et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat Genet 2011; 43: 519–525.

    Article  CAS  Google Scholar 

  41. Chaudhry V, Rowinsky EK, Sartorius SE, Donehower RC, Cornblath DR . Peripheral neuropathy from taxol and cisplatin combination chemotherapy: clinical and electrophysiological studies. Ann Neurol 1994; 35: 304–311.

    Article  CAS  Google Scholar 

  42. Letourneau PC, Ressler AH . Inhibition of neurite initiation and growth by taxol. J Cell Biol 1984; 98: 1355–1362.

    Article  CAS  Google Scholar 

  43. Melli G, Jack C, Lambrinos GL, Ringkamp M, Hoke A . Erythropoietin protects sensory axons against paclitaxel-induced distal degeneration. Neurobiol Dis 2006; 24: 525–530.

    Article  CAS  Google Scholar 

  44. Sahenk Z, Barohn R, New P, Mendell JR . Taxol neuropathy. Electrodiagnostic and sural nerve biopsy findings. Arch Neurol 1994; 51: 726–729.

    Article  CAS  Google Scholar 

  45. Roytta M, Raine CS . Taxol-induced neuropathy: chronic effects of local injection. J Neurocytol 1986; 15: 483–496.

    Article  CAS  Google Scholar 

  46. Allen E, Ding J, Wang W, Pramanik S, Chou J, Yau V et al. Gigaxonin-controlled degradation of MAP1B light chain is critical to neuronal survival. Nature 2005; 438: 224–228.

    Article  CAS  Google Scholar 

  47. Einarsdottir E, Carlsson A, Minde J, Toolanen G, Svensson O, Solders G et al. A mutation in the nerve growth factor beta gene (NGFB) causes loss of pain perception. Hum Mol Genet 2004; 13: 799–805.

    Article  CAS  Google Scholar 

  48. Becker E, Richardson DR . Frataxin: its role in iron metabolism and the pathogenesis of Friedreich's ataxia. Int J Biochem Cell Biol 2001; 33: 1–10.

    Article  CAS  Google Scholar 

  49. Bedlack RS, Edelman D, Gibbs JW 3rd, Kelling D, Strittmatter W, Saunders AM et al. APOE genotype is a risk factor for neuropathy severity in diabetic patients. Neurology 2003; 60: 1022–1024.

    Article  CAS  Google Scholar 

  50. Corder EH, Robertson K, Lannfelt L, Bogdanovic N, Eggertsen G, Wilkins J et al. HIV-infected subjects with the E4 allele for APOE have excess dementia and peripheral neuropathy. Nat Med 1998; 4: 1182–1184.

    Article  CAS  Google Scholar 

  51. Pande M, Hur J, Hong Y, Backus C, Hayes JM, Oh SS et al. Transcriptional profiling of diabetic neuropathy in the BKS db/db mouse: a model of type 2 diabetes. Diabetes 2011; 60: 1981–1989.

    Article  CAS  Google Scholar 

  52. Zurowski D, Nowak L, Machowska A, Wordliczek J, Thor PJ . Exogenous melatonin abolishes mechanical allodynia but not thermal hyperalgesia in neuropathic pain. The role of the opioid system and benzodiazepine-gabaergic mechanism. J Physiol Pharmacol 2012; 63: 641–647.

    CAS  PubMed  Google Scholar 

  53. Hori K, Ozaki N, Suzuki S, Sugiura Y . Upregulations of P2X(3) and ASIC3 involve in hyperalgesia induced by cisplatin administration in rats. Pain 2010; 149: 393–405.

    Article  CAS  Google Scholar 

  54. Padi SS, Shi XQ, Zhao YQ, Ruff MR, Baichoo N, Pert CB et al. Attenuation of rodent neuropathic pain by an orally active peptide, RAP-103, which potently blocks CCR2- and CCR5-mediated monocyte chemotaxis and inflammation. Pain 2012; 153: 95–106.

    Article  CAS  Google Scholar 

  55. Benamar K, Geller EB, Adler MW . First in vivo evidence for a functional interaction between chemokine and cannabinoid systems in the brain. J Pharmacol Exp Ther 2008; 325: 641–645.

    Article  CAS  Google Scholar 

  56. Li X, Li YH, Yu S, Liu Y . Upregulation of Ryk expression in rat dorsal root ganglia after peripheral nerve injury. Brain Res Bull 2008; 77: 178–184.

    Article  CAS  Google Scholar 

  57. Yi XN, Zheng LF, Zhang JW, Zhang LZ, Xu YZ, Luo G et al. Dynamic changes in Robo2 and Slit1 expression in adult rat dorsal root ganglion and sciatic nerve after peripheral and central axonal injury. Neurosci Res 2006; 56: 314–321.

    Article  CAS  Google Scholar 

  58. Gao WQ, Dybdal N, Shinsky N, Murnane A, Schmelzer C, Siegel M et al. Neurotrophin-3 reverses experimental cisplatin-induced peripheral sensory neuropathy. Ann Neurol 1995; 38: 30–37.

    Article  CAS  Google Scholar 

  59. Apfel SC, Lipton RB, Arezzo JC, Kessler JA . Nerve growth factor prevents toxic neuropathy in mice. Ann Neurol 1991; 29: 87–90.

    Article  CAS  Google Scholar 

  60. Peterson ER, Crain SM . Nerve growth factor attenuates neurotoxic effects of taxol on spinal cord-ganglion explants from fetal mice. Science 1982; 217: 377–379.

    Article  CAS  Google Scholar 

  61. Wilson BD, Ii M, Park KW, Suli A, Sorensen LK, Larrieu-Lahargue F et al. Netrins promote developmental and therapeutic angiogenesis. Science 2006; 313: 640–644.

    Article  CAS  Google Scholar 

  62. Toth C, Shim SY, Wang J, Jiang Y, Neumayer G, Belzil C et al. Ndel1 promotes axon regeneration via intermediate filaments. PLoS One 2008; 3: e2014.

    Article  Google Scholar 

  63. Hur J, Sullivan KA, Pande M, Hong Y, Sima AA, Jagadish HV et al. The identification of gene expression profiles associated with progression of human diabetic neuropathy. Brain 2011; 134: 3222–3235.

    Article  Google Scholar 

  64. Lindquist KJ, Jorgenson E, Hoffmann TJ, Witte JS . The impact of improved microarray coverage and larger sample sizes on future genome-wide association studies. Genet Epidemiol 2013; 37: 383–392.

    Article  Google Scholar 

  65. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 2004; 32: D258–D261.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research for CALGB 60202 and 40101 was supported, in part, by grants from the National Cancer Institute (CA31946) to the Alliance for Clinical Trials in Oncology (Monica M Bertagnolli, MD, Chair) and to the Alliance Statistics and Data Center (Daniel J Sargent, PhD, CA33601). The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute. This work was also supported, in part, by the NIH Grants U01 GM61390, U01 GM61393 and U01 HL065962 and the Biobank Japan Project funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology. The genotyping used for this work was generated as part of the NIH Pharmacogenomics Research Network-RIKEN Center for Genomic Medicine Global Alliance. AC and ML were supported, in part, by the NIH Training Grant T32 GM007175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D L Kroetz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chhibber, A., Mefford, J., Stahl, E. et al. Polygenic inheritance of paclitaxel-induced sensory peripheral neuropathy driven by axon outgrowth gene sets in CALGB 40101 (Alliance). Pharmacogenomics J 14, 336–342 (2014). https://doi.org/10.1038/tpj.2014.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2014.2

Keywords

This article is cited by

Search

Quick links