Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Coordinated dysregulation of mRNAs and microRNAs in the rat medial prefrontal cortex following a history of alcohol dependence

Abstract

Long-term changes in brain gene expression have been identified in alcohol dependence, but underlying mechanisms remain unknown. Here, we examined the potential role of microRNAs (miRNAs) for persistent gene expression changes in the rat medial prefrontal cortex (mPFC) after a history of alcohol dependence. Two-bottle free-choice alcohol consumption increased following 7-week exposure to intermittent alcohol intoxication. A bioinformatic approach using microarray analysis, quantitative PCR (qPCR), bioinformatic analysis and microRNA–messenger RNA (mRNA) integrative analysis identified expression patterns indicative of a disruption in synaptic processes and neuroplasticity. About 41 rat miRNAs and 165 mRNAs in the mPFC were significantly altered after chronic alcohol exposure. A subset of the miRNAs and mRNAs was confirmed by qPCR. Gene ontology categories of differential expression pointed to functional processes commonly associated with neurotransmission, neuroadaptation and synaptic plasticity. microRNA–mRNA expression pairing identified 33 miRNAs putatively targeting 89 mRNAs suggesting transcriptional networks involved in axonal guidance and neurotransmitter signaling. Our results demonstrate a significant shift in microRNA expression patterns in the mPFC following a history of dependence. Owing to their global regulation of multiple downstream target transcripts, miRNAs may have a pivotal role in the reorganization of synaptic connections and long-term neuroadaptations in alcohol dependence. MicroRNA-mediated alterations of transcriptional networks may be involved in disrupted prefrontal control over alcohol drinking observed in alcoholic patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Nestler EJ . Genes and addiction. Nat Genet 2000; 26: 277–281.

    Article  CAS  PubMed  Google Scholar 

  2. Rimondini R, Arlinde C, Sommer W, Heilig M . Long-lasting increase in voluntary ethanol consumption and transcriptional regulation in the rat brain after intermittent exposure to alcohol. FASEB J 2002; 16: 27–35.

    Article  CAS  PubMed  Google Scholar 

  3. Sommer W, Arlinde C, Heilig M . The search for candidate genes of alcoholism: evidence from expression profiling studies. Addict Biol 2005; 10: 71–79.

    Article  CAS  PubMed  Google Scholar 

  4. Arlinde C, Sommer W, Bjork K, Reimers M, Hyytia P, Kiianmaa K et al. A cluster of differentially expressed signal transduction genes identified by microarray analysis in a rat genetic model of alcoholism. Pharmacogenomics J 2004; 4: 208–218.

    Article  CAS  PubMed  Google Scholar 

  5. Hoffman PL, Miles M, Edenberg HJ, Sommer W, Tabakoff B, Wehner JM et al. Gene expression in brain: a window on ethanol dependence, neuroadaptation, and preference. Alcohol Clin Exp Res 2003; 27: 155–168.

    Article  PubMed  Google Scholar 

  6. Bjork K, Hansson AC, Sommer WH . Genetic variation and brain gene expression in rodent models of alcoholism implications for medication development. Int Rev Neurobiol 2010; 91: 129–171.

    Article  PubMed  Google Scholar 

  7. Taqi MM, Bazov I, Watanabe H, Sheedy D, Harper C, Alkass K et al. Prodynorphin CpG-SNPs associated with alcohol dependence: elevated methylation in the brain of human alcoholics. Addict Biol 2011; 16: 499–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duka T, Trick L, Nikolaou K, Gray MA, Kempton MJ, Williams H et al. Unique brain areas associated with abstinence control are damaged in multiply detoxified alcoholics. Biol Psychiatry 2011; 70: 545–552.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vollstadt-Klein S, Hermann D, Rabinstein J, Wichert S, Klein O, Ende G et al. Increased activation of the ACC during a spatial working memory task in alcohol-dependence versus heavy social drinking. Alcohol Clin Exp Res 2010; 34: 771–776.

    Article  PubMed  Google Scholar 

  10. Liu J, Lewohl JM, Harris RA, Iyer VR, Dodd PR, Randall PK et al. Patterns of gene expression in the frontal cortex discriminate alcoholic from nonalcoholic individuals. Neuropsychopharmacology 2006; 31: 1574–1582.

    Article  CAS  PubMed  Google Scholar 

  11. Lewohl JM, Nunez YO, Dodd PR, Tiwari GR, Harris RA, Mayfield RD . Up-regulation of microRNAs in brain of human alcoholics. Alcohol Clin Exp Res 2011; 35: 1–10.

    Article  Google Scholar 

  12. Mayfield RD, Lewohl JM, Dodd PR, Herlihy A, Liu J, Harris RA . Patterns of gene expression are altered in the frontal and motor cortices of human alcoholics. J Neurochem 2002; 81: 802–813.

    Article  CAS  PubMed  Google Scholar 

  13. Liu J, Lewohl JM, Dodd PR, Randall PK, Harris RA, Mayfield RD . Gene expression profiling of individual cases reveals consistent transcriptional changes in alcoholic human brain. J Neurochem 2004; 90: 1050–1058.

    Article  CAS  PubMed  Google Scholar 

  14. Guo H, Ingolia NT, Weissman JS, Bartel DP . Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2009; 466: 835–840.

    Article  Google Scholar 

  15. Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD . Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 2005; 123: 607–620.

    Article  CAS  PubMed  Google Scholar 

  16. Yang JS, Phillips MD, Betel D, Mu P, Ventura A, Siepel AC et al. Widespread regulatory activity of vertebrate microRNA* species. RNA 2011; 17: 312–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou H, Huang X, Cui H, Luo X, Tang Y, Chen S et al. miR-155 and its star-form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells. Blood 2010; 116: 5885–5894.

    Article  CAS  PubMed  Google Scholar 

  18. Ghildiyal M, Xu J, Seitz H, Weng Z, Zamore PD . Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA 2010; 16: 43–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL . The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J Neurosci 2008; 28: 14341–14346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng LC, Pastrana E, Tavazoie M, Doetsch F . miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 2009; 12: 399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M et al. A brain-specific microRNA regulates dendritic spine development. Nature 2006; 439: 283–289.

    Article  CAS  PubMed  Google Scholar 

  22. Cohen JE, Lee PR, Chen S, Li W, Fields RD . MicroRNA regulation of homeostatic synaptic plasticity. Proc Natl Acad Sci USA 2011; 108: 11650–11655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tao J, Wu H, Lin Q, Wei W, Lu XH, Cantle JP et al. Deletion of astroglial Dicer causes non-cell-autonomous neuronal dysfunction and degeneration. J Neurosci 2011; 31: 8306–8319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pietrzykowski AZ . The role of microRNAs in drug addiction: a big lesson from tiny molecules. Int Rev Neurobiol 2010; 91: 1–24.

    Article  CAS  PubMed  Google Scholar 

  25. Pietrzykowski AZ, Friesen RM, Martin GE, Puig SI, Nowak CL, Wynne PM et al. Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron 2008; 59: 274–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hollander JA, Im HI, Amelio AL, Kocerha J, Bali P, Lu Q et al. Striatal microRNA controls cocaine intake through CREB signalling. Nature 2010; 466: 197–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Im HI, Hollander JA, Bali P, Kenny PJ . MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci 2010; 13: 1120–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. He Y, Yang C, Kirkmire CM, Wang ZJ . Regulation of opioid tolerance by let-7 family microRNA targeting the mu opioid receptor. J Neurosci 2010; 30: 10251–10258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sommer WH, Rimondini R, Hansson AC, Hipskind PA, Gehlert DR, Barr CS et al. Upregulation of voluntary alcohol intake, behavioral sensitivity to stress, and amygdala crhr1 expression following a history of dependence. Biol Psychiatry 2008; 63: 139–145.

    Article  PubMed  Google Scholar 

  30. Hansson AC, Rimondini R, Neznanova O, Sommer WH, Heilig M . Neuroplasticity in brain reward circuitry following a history of ethanol dependence. Eur J Neurosci 2008; 27: 1912–1922.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Paxonis G, Watson C . The Rat Brain Stereotaxic Coordinates 2007. 6th edn. Elvesier Inc.

  32. Bjork K, Saarikoski ST, Arlinde C, Kovanen L, Osei-Hyiaman D, Ubaldi M et al. Glutathione-S-transferase expression in the brain: possible role in ethanol preference and longevity. FASEB J 2006; 20: 1826–1835.

    Article  CAS  PubMed  Google Scholar 

  33. Benjamini Y, Hochberg Y . Controlling the false discovery rate - a practical and powerful approach to multiple testing. J R Stat Soc Ser B-Methodological 1995; 57: 289–300.

    Google Scholar 

  34. Reimers M, Heilig M, Sommer WH . Gene discovery in neuropharmacological and behavioral studies using Affymetrix microarray data. Methods 2005; 37: 219–228.

    Article  CAS  PubMed  Google Scholar 

  35. Flatscher-Bader T, van der Brug MP, Landis N, Hwang JW, Harrison E, Wilce PA . Comparative gene expression in brain regions of human alcoholics. Genes Brain Behav 2006; 5 (Suppl 1): 78–84.

    Article  CAS  PubMed  Google Scholar 

  36. Hansson AC, Rimondini R, Heilig M, Mathe AA, Sommer WH . Dissociation of antidepressant-like activity of escitalopram and nortriptyline on behaviour and hippocampal BDNF expression in female rats. J Psychopharmacol 2011; 25: 1378–1387.

    Article  CAS  PubMed  Google Scholar 

  37. Dennis GJ, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 2003; 4: P3.

    Article  PubMed  Google Scholar 

  38. Betel D, Wilson M, Gabow A, Marks DS, Sander C . The microRNA.org resource: targets and expression. Nucleic Acids Res 2008; 36 (Database issue): D149–D153.

    CAS  PubMed  Google Scholar 

  39. Betel D, Koppal A, Agius P, Sander C, Leslie C . Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 2010; 11: R90.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Moonat S, Sakharkar AJ, Zhang H, Pandey SC . The role of amygdaloid brain-derived neurotrophic factor, activity-regulated cytoskeleton-associated protein and dendritic spines in anxiety and alcoholism. Addict Biol 2010; 16: 238–250.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fanous S, Lacagnina MJ, Nikulina EM, Hammer Jr RP . Sensitized activation of Fos and brain-derived neurotrophic factor in the medial prefrontal cortex and ventral tegmental area accompanies behavioral sensitization to amphetamine. Neuropharmacology 2011; 61: 558–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vilpoux C, Warnault V, Pierrefiche O, Daoust M, Naassila M . Ethanol-sensitive brain regions in rat and mouse: a cartographic review, using immediate early gene expression. Alcohol Clin Exp Res 2009; 33: 945–969.

    Article  CAS  PubMed  Google Scholar 

  43. Spanagel R, Pendyala G, Abarca C, Zghoul T, Sanchis-Segura C, Magnone MC et al. The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med 2005; 11: 35–42.

    Article  CAS  PubMed  Google Scholar 

  44. Caffino L, Racagni G, Fumagalli F . Stress and cocaine interact to modulate Arc/Arg3.1 expression in rat brain. Psychopharmacology (Berl) 2011; 218: 241–248.

    Article  CAS  Google Scholar 

  45. Werme M, Olson L, Brene S . NGFI-B and nor1 mRNAs are upregulated in brain reward pathways by drugs of abuse: different effects in Fischer and Lewis rats. Brain Res Mol Brain Res 2000; 76: 18–24.

    Article  CAS  PubMed  Google Scholar 

  46. Novak G, Zai CC, Mirkhani M, Shaikh S, Vincent JB, Meltzer H et al. Replicated association of the NR4A3 gene with smoking behaviour in schizophrenia and in bipolar disorder. Genes Brain Behav 2010; 9: 910–917.

    Article  CAS  PubMed  Google Scholar 

  47. Nachmani D, Lankry D, Wolf DG, Mandelboim O . The human cytomegalovirus microRNA miR-UL112 acts synergistically with a cellular microRNA to escape immune elimination. Nat Immunol 2010; 11: 806–813.

    Article  CAS  PubMed  Google Scholar 

  48. Sathyan P, Golden HB, Miranda RC . Competing interactions between micro-RNAs determine neural progenitor survival and proliferation after ethanol exposure: evidence from an ex vivo model of the fetal cerebral cortical neuroepithelium. J Neurosci 2007; 27: 8546–8557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Heilig M, Egli M, Crabbe JC, Becker HC . Acute withdrawal, protracted abstinence and negative affect in alcoholism: are they linked? Addict Biol 2010; 15: 169–184.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Melendez RI, McGinty JF, Kalivas PW, Becker HC . Brain region-specific gene expression changes after chronic intermittent ethanol exposure and early withdrawal in C57BL/6J mice. Addict Biol 2012; 17: 351–364.

    Article  CAS  PubMed  Google Scholar 

  51. Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Sikela JM et al. Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. J Neurosci 2005; 25: 2255–2266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Matthaus F, Smith VA, Fogtman A, Sommer WH, Leonardi-Essmann F, Lourdusamy A et al. Interactive molecular networks obtained by computer-aided conversion of microarray data from brains of alcohol-drinking rats. Pharmacopsychiatry 2009; 42 (Suppl 1): S118–S128.

    Article  CAS  PubMed  Google Scholar 

  53. Eipper-Mains JE, Kiraly DD, Palakodeti D, Mains RE, Eipper BA, Graveley BR . MicroRNA-Seq reveals cocaine-regulated expression of striatal microRNAs. RNA 2011; 17: 1529–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang W, Li MD . Nicotine modulates expression of miR-140*, which targets the 3′-untranslated region of dynamin 1 gene (Dnm1). Int J Neuropsychopharmacol 2009; 12: 537–546.

    Article  CAS  PubMed  Google Scholar 

  55. Spanagel R . Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol Rev 2009; 89: 649–705.

    Article  CAS  PubMed  Google Scholar 

  56. Wilke N, Sganga M, Barhite S, Miles MF . Effects of alcohol on gene expression in neural cells. EXS 1994; 71: 49–59.

    CAS  PubMed  Google Scholar 

  57. Koob GF . A role for GABA mechanisms in the motivational effects of alcohol. Biochem Pharmacol 2004; 68: 1515–1525.

    Article  CAS  PubMed  Google Scholar 

  58. Koob GF, Ahmed SH, Boutrel B, Chen SA, Kenny PJ, Markou A et al. Neurobiological mechanisms in the transition from drug use to drug dependence. Neurosci Biobehav Rev 2004; 27: 739–749.

    Article  CAS  PubMed  Google Scholar 

  59. Le Merrer J, Befort K, Gardon O, Filliol D, Darcq E, Dembele D et al. Protracted abstinence from distinct drugs of abuse shows regulation of a common gene network. Addict Biol 2012; 17: 1–12.

    Article  CAS  PubMed  Google Scholar 

  60. Duman RS, Monteggia LM . A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006; 59: 1116–1127.

    Article  CAS  PubMed  Google Scholar 

  61. Miura P, Amirouche A, Clow C, Belanger G, Jasmin BJ . BDNF expression is repressed during myogenic differentiation by miR-206. J Neurochem 2012; 20: 230–238.

    Article  Google Scholar 

  62. McGough NN, He DY, Logrip ML, Jeanblanc J, Phamluong K, Luong K et al. RACK1 and brain-derived neurotrophic factor: a homeostatic pathway that regulates alcohol addiction. J Neurosci 2004; 24: 10542–10552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jeanblanc J, He DY, McGough NN, Logrip ML, Phamluong K, Janak PH et al. The dopamine D3 receptor is part of a homeostatic pathway regulating ethanol consumption. J Neurosci 2006; 26: 1457–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ron D, Messing RO . Signaling pathways mediating alcohol effects. Curr Top Behav Neurosci 2011; e-pub ahead of print.

  65. Bergami M, Rimondini R, Santi S, Blum R, Gotz M, Canossa M . Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior. Proc Natl Acad Sci USA 2008; 105: 15570–15575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Horch HW, Kruttgen A, Portbury SD, Katz LC . Destabilization of cortical dendrites and spines by BDNF. Neuron 1999; 23: 353–364.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

WHS was supported by the frameworks of Nationales Genomforschungsnetz (NGFN_No. 01GS08152, see under www.ngfn-alkohol.de) and by the Bundesministerium für Bildung und Forschung. MH was supported by the Intramural Research Program of the National Institutes of Alcohol Abuse and Alcoholism. We are especially thankful for the DIRP Microarray Core Facility at the NIMH for processing our microRNA arrays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J D Tapocik.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tapocik, J., Solomon, M., Flanigan, M. et al. Coordinated dysregulation of mRNAs and microRNAs in the rat medial prefrontal cortex following a history of alcohol dependence. Pharmacogenomics J 13, 286–296 (2013). https://doi.org/10.1038/tpj.2012.17

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2012.17

Keywords

This article is cited by

Search

Quick links