Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Support for association of HSPG2 with tardive dyskinesia in Caucasian populations

Abstract

Tardive dyskinesia (TD) is a severe adverse effect of chronic antipsychotic drug treatment. In addition to clinical risk factors, TD susceptibility is influenced by genetic predisposition. Recently, Syu et al. (2010) reported a genome-wide association screening of TD in Japanese schizophrenia patients. The best result was association of single-nucleotide polymorphism (SNP) rs2445142 in the HSPG2 (heparan sulfate proteoglycan 2) gene with TD. In the present study, we report a replication study of the five top Japanese TD-associated SNPs in two Caucasian TD samples. Applying logistic regression and controlling for relevant clinical risk factors, we were able to replicate the association of HSPG2 SNP rs2445142 with TD in a prospective study sample of 179 Americans of European origin by performing a secondary analysis of the CATIE (Clinical Antipsychotic Trials of Intervention Effectiveness) genome-wide association study data set, and using a perfect proxy surrogate marker (rs878949; P=0.039). An association of the ‘G’ risk allele of HSPG2 SNP rs2445142 with TD was also shown in a sample of Jewish Israeli schizophrenia patients (retrospective, cross-sectional design; P=0.03). Although the associations were only nominally significant, the findings provide further support for the possible involvement of HSPG2 in susceptibility to TD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blanchet PJ . Antipsychotic drug-induced movement disorders. Can J Neurol Sci 2003; 30: S101–S107.

    Article  PubMed  Google Scholar 

  2. Haddad PM, Dursun SM . Neurological complications of psychiatric drugs: clinical features and management. Hum Psychopharmacol 2008; 23 (Suppl): 15–26.

    Article  PubMed  Google Scholar 

  3. Glazer WM, Morgenstern H, Doucette JT . Predicting the long-term risk of tardive dyskinesia in outpatients maintained on neuroleptic medications. J Clin Psychiatry 1993; 54: 133–139.

    CAS  PubMed  Google Scholar 

  4. de Leon J . The effect of atypical versus typical antipsychotics on tardive dyskinesia: a Naturalistic Study. Eur Arch Psychiatry Clin Neurosci 2007; 257: 169–172.

    Article  PubMed  Google Scholar 

  5. Remington G . Tardive dyskinesia: eliminated, forgotten, or overshadowed? Curr Opin Psychiatry 2007; 20: 131–137.

    Article  PubMed  Google Scholar 

  6. Correll CU, Schenk EM . Tardive dyskinesia and new antipsychotics. Curr Opin Psychiatry 2008; 21: 151–156.

    Article  PubMed  Google Scholar 

  7. Yassa R, Jeste DV . Gender differences in tardive dyskinesia: a critical review of the literature. Schizophrenia Bull 1992; 18: 701–715.

    Article  CAS  Google Scholar 

  8. Kane JM . Tardive dyskinesia: epidemiological and clinical presentation. In: Bloom FE, Kupfer DJ (eds). Psychopharmacology: The 4th Generation of Progress. Raven Press: New York, 1995.

    Google Scholar 

  9. Tenback DE, van Harten PN, van Os J . Non-therapeutic risk factors for onset of tardive dyskinesia in schizophrenia: a meta-analysis. Mov Disord 2009; 24: 2309–2315.

    Article  PubMed  Google Scholar 

  10. Lerer B, Segman RH . Pharmacogenetics of antipsychotic therapy: pivotal research issues and the prospects for clinical implementation. Dialogues Clin Neurosci 2006; 8: 85–94.

    PubMed  PubMed Central  Google Scholar 

  11. Muller DJ, Schulze TG, Knapp M, Held T, Krauss H, Weber T et al. Familial occurrence of tardive dyskinesia. Acta Psychiatr Scand 2001; 104: 375–379.

    Article  CAS  PubMed  Google Scholar 

  12. Ismail B, Cantor-Graae E, McNeil TF . Neurodevelopmental origins of tardive like dyskinesia in schizophrenia patients and their siblings. Schizophr Bull 2001; 27: 629–641.

    Article  CAS  PubMed  Google Scholar 

  13. Egan MF, Apud J, Wyatt RJ . Treatment of tardive dyskinesia. Schizophr Bull 1997; 23: 583–609.

    Article  CAS  PubMed  Google Scholar 

  14. Sagara Y . Induction of reactive oxygen species in neurons by haloperidol. J Neurochem 1998; 71: 1002–1012.

    Article  CAS  PubMed  Google Scholar 

  15. Naidu PS, Singh A, Kulkarni SK . Carvedilol attenuates neuroleptic-induced orofacial dyskinesia: possible antioxidant mechanisms. Br J Pharmacol 2002; 136: 193–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Delfs JM, Ellison GD, Mercugliano M, Chesselet MF . Expression of glutamic acid decarboxylase mRNA in striatum and pallidum in an animal model of tardive dyskinesia. Exp Neurol 1995; 133: 175–188.

    Article  CAS  PubMed  Google Scholar 

  17. Sakai K, Gao XM, Hashimoto T, Tamminga CA . Traditional and new antipsychotic drugs differentially alter neurotransmission markers in basal ganglia-thalamocortical neural pathways. Synapse 2001; 39: 152–160.

    Article  CAS  PubMed  Google Scholar 

  18. Fenton WS . Prevalence of spontaneous dyskinesia in schizophrenia. J Clin Psychiatry 2000; 61 (Suppl 4): 10–14.

    PubMed  Google Scholar 

  19. Pappa S, Dazzan P . Spontaneous movement disorders in antipsychotic-naive patients with first-episode psychoses: a systematic review. Psychol Med 2009; 39: 1065–1076.

    Article  CAS  PubMed  Google Scholar 

  20. Koning JP, Tenback DE, van Os J, Aleman A, Kahn RS, van Harten PN . Dyskinesia and parkinsonism in antipsychotic-naive patients with schizophrenia, first-degree relatives and healthy controls: a meta-analysis. Schizophr Bull 2010; 36: 723–731.

    Article  PubMed  Google Scholar 

  21. Lerer B, Segman RH, Fangerau H, Daly AK, Basile VS, Cavallaro R et al. Pharmacogenetics of tardive dyskinesia: combined analysis of 780 patients supports association with dopamine D3 receptor gene Ser9Gly polymorphism. Neuropsychopharmacology 2002; 27: 105–119.

    Article  CAS  PubMed  Google Scholar 

  22. Lerer B, Segman RH, Tan EC, Basile VS, Cavallaro R, Aschauer HN et al. Combined analysis of 635 patients confirms an age-related association of the serotonin receptor gene with tardive dyskinesia and specificity for the non-orofacial subtype. Int J Neuropsychopharmacol 2005; 8: 411–425.

    Article  CAS  PubMed  Google Scholar 

  23. Bakker PR, van Harten PN, van Os J . Antipsychotic-induced tardive dyskinesia and the Ser9Gly polymorphism in the DRD3 gene: a meta analysis. Schizophr Res 2006; 83: 185–192.

    Article  PubMed  Google Scholar 

  24. Bakker PR, van Harten PN, van Os J . Antipsychotic-induced tardive dyskinesia and polymorphic variations in COMT, DRD2, CYP1A2 and MnSOD genes: a meta-analysis of pharmacogenetic interactions. Mol Psychiatry 2008; 13: 544–556.

    Article  CAS  PubMed  Google Scholar 

  25. Patsopoulos NA, Ntzani EE, Zintzaras E, Ioannidis JP . CYP2D6 polymorphisms and the risk of tardive dyskinesia in schizophrenia: a meta-analysis. Pharmacogenet Genomics 2005; 15: 151–158.

    Article  CAS  PubMed  Google Scholar 

  26. Tiwari AK, Deshpande SN, Lerer B, Nimgaonkar VL, Thelma BK . Genetic susceptibility to Tardive Dyskinesia in chronic schizophrenia subjects: V. Association of CYP1A2 1545 C>T polymorphism. Pharmacogenomics J 2007; 7: 305–311.

    Article  CAS  PubMed  Google Scholar 

  27. Tsai HT, Caroff SN, Miller DD, McEvoy J, Lieberman JA, North KE et al. A candidate gene study of tardive dyskinesia in the CATIE schizophrenia trial. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 336–340.

    CAS  PubMed  Google Scholar 

  28. Aberg K, Adkins DE, Bukszár J, Webb BT, Caroff SN, Miller del D et al. Genomewide association study of movement-related adverse antipsychotic effects. Biol Psychiatry 2010; 67: 279–282.

    Article  PubMed  Google Scholar 

  29. Greenbaum L, Alkelai A, Rigbi A, Kohn Y, Lerer B . Evidence for association of the GLI2 gene with tardive dyskinesia in chronic schizophrenia patients. Mov Disord 2010; 25: 2809–2817.

    Article  PubMed  Google Scholar 

  30. Syu A, Ishiguro H, Inada T, Horiuchi Y, Tanaka S, Ishikawa M . Association of the HSPG2 gene with neuroleptic-induced tardive dyskinesia. Neuropsychopharmacology 2010; 35: 1155–1164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Inada T, Koga M, Ishiguro H, Horiuchi Y, Syu A, Yoshio T et al. Pathway-based association analysis of genome-wide screening data suggest that genes associated with the gamma-aminobutyric acid receptor signaling pathway are involved in neuroleptic-induced, treatment-resistant tardive dyskinesia. Pharmacogenet Genomics 2008; 18: 317–323.

    Article  CAS  PubMed  Google Scholar 

  32. Segman R, Neeman T, Heresco-Levy U, Finkel B, Karagichev L, Schlafman M et al. Genotypic association between the dopamine D3 receptor and tardive dyskinesia in chronic schizophrenia. Mol Psychiatry 1999; 4: 247–253.

    Article  CAS  PubMed  Google Scholar 

  33. Segman RH, Heresco-Levy U, Finkel B, Goltser T, Shalem R, Schlafman M et al. Association between the serotonin 2A receptor gene and tardive dyskinesia in chronic schizophrenia. Mol Psychiatry 2001; 6: 225–229.

    Article  CAS  PubMed  Google Scholar 

  34. Guy W (1976). ECDEU Assessment Manual for Psychopharmacology, Revised edn. Department of Health, Education and Welfare: Washington DC.

    Google Scholar 

  35. Schooler NR, Kane JM . Research diagnoses for tardive dyskinesia. Arch Gen Psychiatry 1982; 39: 486–487.

    CAS  PubMed  Google Scholar 

  36. Steen VM, Llie R, McEwan T, McCreadie RG . Dopamine D3 receptor gene variant and susceptibility to tardive dyskinesia in schizophrenic patients. Mol Psychiatry 1997; 2: 139–145.

    Article  CAS  PubMed  Google Scholar 

  37. Andreassen OA, MacEwan T, Gulbrandsen AK, McCreadie RG, Steen VM . Non-functional CYP2D6 alleles and risk for neuroleptic-induced movement disorders in schizophrenic patients. Psychopharmacology (Berl) 1997; 131: 174–179.

    Article  CAS  Google Scholar 

  38. Løvlie R, Daly AK, Blennerhassett R, Ferrier N, Steen VM . Homozygosity for the Gly-9 variant of the dopamine D3 receptor and risk for tardive dyskinesia in schizophrenic patients. Int J Neuropsychopharmacol 2000; 3: 61–65.

    Article  PubMed  Google Scholar 

  39. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 2005; 353: 1209–1223.

    Article  CAS  PubMed  Google Scholar 

  41. Sullivan PF, Lin D, Tzeng JY, van den Oord E, Perkins D, Stroup TS et al. Genomewide association for schizophrenia in the CATIE study: results of stage 1. Mol Psychiatry 2008; 13: 570–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stroup TS, McEvoy JP, Swartz MS, Byerly MJ, Glick ID, Canive JM et al. The National Institute of Mental Health Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) project: schizophrenia trial design and protocol development. Schizophr Bull 2003; 29: 15–31.

    Article  PubMed  Google Scholar 

  43. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D . Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38: 904–909.

    Article  CAS  PubMed  Google Scholar 

  44. Reich D, Price AL, Patterson N . Principal component analysis of genetic data. Nat Genet 2008; 40: 646–649.

    Article  Google Scholar 

  45. Nasrallah HA . Focus on lower risk of tardive dyskinesia with atypical antipsychotics. Ann Clin Psychiatry 2006; 18: 57–62.

    Article  PubMed  Google Scholar 

  46. Pierre JM . Extrapyramidal symptoms with atypical antipsychotics: incidence, prevention and management. Drug Saf 2005; 28: 191–208.

    Article  CAS  PubMed  Google Scholar 

  47. Chong SA, Mahendran R, Machin D, Chua HC, Parker G, Kane J . Tardive dyskinesia among Chinese and Malay patients with schizophrenia. J Clin Psychopharmacol 2002; 22: 26–30.

    Article  PubMed  Google Scholar 

  48. Bhatia T, Sabeeha MR, Shriharsh V, Garg K, Segman RH, Uriel HL et al. Clinical and familial correlates of tardive dyskinesia in India and Israel. J Postgrad Med 2004; 50: 167–172.

    CAS  PubMed  Google Scholar 

  49. Lin PI, Vance JM, Pericak-Vance MA, Martin ER . No gene is an island: the flip-flop phenomenon. Am J Hum Genet 2007; 80: 531–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zaykin V, Shibata K . Genetic flip-flop without an accompanying change in linkage disequilibrium. Am J Hum Genet 2008; 82: 794–796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Crowley JJ, Sullivan PF, McLeod HL . Pharmacogenomic genome-wide association studies: lessons learned thus far. Pharmacogenomics 2009; 10: 161–163.

    Article  PubMed  Google Scholar 

  52. Turner ST, Bailey KR, Fridley BL, Chapman AB, Schwartz GL, Chai HS et al. Genomic association analysis suggests chromosome 12 locus influencing antihypertensive response to thiazide diuretic. Hypertension 2008; 52: 359–365.

    Article  CAS  PubMed  Google Scholar 

  53. Sullivan PF . Spurious genetic associations. Biol Psychiatry 2007; 61: 1121–1126.

    Article  CAS  PubMed  Google Scholar 

  54. van den Oord EJ, Kuo PH, Hartmann AM, Webb BT, Möller HJ, Hettema JM et al. Genomewide association analysis followed by a replication study implicates a novel candidate gene for neuroticism. Arch Gen Psychiatry 2008; 65: 1062–1071.

    Article  PubMed  Google Scholar 

  55. Snow AD, Sekiguchi R, Nochlin D, Fraser P, Kimata K, Mizutani A et al. An important role of heparan sulfate proteoglycan (Perlecan) in a model system for the deposition and persistence of fibrillar A beta-amyloid in rat brain. Neuron 1994; 12: 219–234.

    Article  CAS  PubMed  Google Scholar 

  56. Rosenmann H, Meiner Z, Kahana E, Aladjem Z, Friedman G, Ben-Yehuda A et al. An association study of a polymorphism in the heparan sulfate proteoglycan gene (perlecan, HSPG2) and Alzheimer's disease. Am J Med Genet B Neuropsychiatr Genet 2004; 128B: 123–125.

    Article  PubMed  Google Scholar 

  57. Ruigrok YM, Rinkel GJ, Wijmenga C, Kasuya H, Tajima A, Takahashi T et al. Association analysis of genes involved in the maintenance of the integrity of the extracellular matrix with intracranial aneurysms in a Japanese cohort. Cerebrovasc Dis 2009; 28: 131–134.

    Article  CAS  PubMed  Google Scholar 

  58. Tammenmaa IA, McGrath JJ, Sailas E, Soares-Weiser K . Cholinergic medication for neuroleptic-induced tardive dyskinesia. Cochrane Database Syst Rev 2002; 3: CD000207.

    Google Scholar 

  59. Rotundo RL, Rossi SG, Kimbell LM, Ruiz C, Marrero E . Targeting acetylcholinesterase to the neuromuscular synapse. Chem Biol Interact 2005; 157–158: 15–21.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a grant from the Michael J Fox Foundation (to BL). The principal investigators of the CATIE (Clinical Antipsychotic Trials of Intervention Effectiveness) trial were Jeffrey A Lieberman, T Scott Stroup, and Joseph P McEvoy. The CATIE trial was funded by a grant from the National Institute of Mental Health (N01 MH900001) along with MH074027 (PI PF Sullivan). Genotyping was funded by Eli Lilly and Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Lerer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenbaum, L., Alkelai, A., Zozulinsky, P. et al. Support for association of HSPG2 with tardive dyskinesia in Caucasian populations. Pharmacogenomics J 12, 513–520 (2012). https://doi.org/10.1038/tpj.2011.32

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2011.32

Keywords

This article is cited by

Search

Quick links