Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The temporal relationship between ABCB1 promoter hypomethylation, ABCB1 expression and acquisition of drug resistance

Abstract

Induced expression of the Abcb1 drug transporter often occurs in tumors in response to chemotherapy. The role that epigenetic modifications within the ABCB1 promoter play in Abcb1 expression remains unclear. We selected MCF-7 cells for survival in increasing doses of chemotherapy drugs, and assessed the methylation status of 66 CpG sites within the ABCB1 promoter preceding, accompanying and following the onset of drug resistance. Increased ABCB1 transcript expression coincident with acquisition of resistance to epirubicin or paclitaxel was temporally associated with hypomethylation of the ABCB1 downstream promoter in the absence of gene amplifications or changes in mRNA stability. Treatment of control MCF-7 cells with demethylating and/or acetylating agents increased ABCB1 transcript expression. In addition to broad promoter hypomethylation, dramatic reductions in the methylation of specific CpG sites within the promoter were observed, suggesting that these sites may play a predominant role in transcriptional activation through promoter hypomethylation. Furthermore, our data suggest that allele-specific reductions in ABCB1 promoter methylation regulate promoter usage within paclitaxel-resistant cells. This study provides strong evidence that changes in ABCB1 promoter methylation, ABCB1 promoter usage and ABCB1 transcript expression can be temporally and causally correlated with the acquisition of drug resistance in breast tumor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Baker EK, El-Osta A . The rise of DNA methylation and the importance of chromatin on multidrug resistance in cancer. Exp Cell Res 2003; 290: 177–194.

    Article  CAS  PubMed  Google Scholar 

  2. Lehnert M . Clinical multidrug resistance in cancer: a multifactorial problem. Eur J Cancer 1996; 32A: 912–920.

    Article  CAS  PubMed  Google Scholar 

  3. Gottesman MM, Ambudkar SV . Overview: ABC transporters and human disease. J Bioenerg Biomembr 2001; 33: 453–458.

    Article  CAS  PubMed  Google Scholar 

  4. Kantharidis P, El-Osta A, deSilva M, Wall DM, Hu XF, Slater A et al. Altered methylation of the human MDR1 promoter is associated with acquired multidrug resistance. Clin Cancer Res 1997; 3: 2025–2032.

    CAS  PubMed  Google Scholar 

  5. Desiderato L, Davey MW, Piper AA . Demethylation of the human MDR1 5′ region accompanies activation of P-glycoprotein expression in a HL60 multidrug resistant subline. Somat Cell Mol Genet 1997; 23: 391–400.

    Article  CAS  PubMed  Google Scholar 

  6. Kusaba H, Nakayama M, Harada T, Nomoto M, Kohno K, Kuwano M et al. Association of 5′ CpG demethylation and altered chromatin structure in the promoter region with transcriptional activation of the multidrug resistance 1 gene in human cancer cells. Eur J Biochem 1999; 262: 924–932.

    Article  CAS  PubMed  Google Scholar 

  7. Takeda M, Mizokami A, Mamiya K, Li YQ, Zhang J, Keller ET et al. The establishment of two paclitaxel-resistant prostate cancer cell lines and the mechanisms of paclitaxel resistance with two cell lines. Prostate 2007; 67: 955–967.

    Article  CAS  PubMed  Google Scholar 

  8. David GL, Yegnasubramanian S, Kumar A, Marchi VL, De Marzo AM, Lin X et al. MDR1 promoter hypermethylation in MCF-7 human breast cancer cells: changes in chromatin structure induced by treatment with 5-Aza-cytidine. Cancer Biol Ther 2004; 3: 540–548.

    Article  CAS  PubMed  Google Scholar 

  9. Liscovitch M, Ravid D . A case study in misidentification of cancer cell lines: MCF-7/AdrR cells (re-designated NCI/ADR-RES) are derived from OVCAR-8 human ovarian carcinoma cells. Cancer Lett 2007; 245: 350–352.

    Article  CAS  PubMed  Google Scholar 

  10. Chekhun VF, Kulik GI, Yurchenko OV, Tryndyak VP, Todor IN, Luniv LS et al. Role of DNA hypomethylation in the development of the resistance to doxorubicin in human MCF-7 breast adenocarcinoma cells. Cancer Lett 2006; 231: 87–93.

    Article  CAS  PubMed  Google Scholar 

  11. Chen KG, Wang YC, Schaner ME, Francisco B, Duran GE, Juric D et al. Genetic and epigenetic modeling of the origins of multidrug-resistant cells in a human sarcoma cell line. Cancer Res 2005; 65: 9388–9397.

    Article  CAS  PubMed  Google Scholar 

  12. Baker EK, Johnstone RW, Zalcberg JR, El-Osta A . Epigenetic changes to the MDR1 locus in response to chemotherapeutic drugs. Oncogene 2005; 24: 8061–8075.

    Article  CAS  PubMed  Google Scholar 

  13. Hembruff SL, Laberge ML, Villeneuve DJ, Guo B, Veitch Z, Cecchetto M et al. Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance. BMC Cancer 2008; 8: 318.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Veitch ZW, Guo B, Hembruff SL, Bewick AJ, Heibein AD, Eng J et al. Induction of 1C aldoketoreductases and other drug dose-dependent genes upon acquisition of anthracycline resistance. Pharmacogenet Genomics 2009; 19: 477–488.

    Article  CAS  PubMed  Google Scholar 

  15. Guo B, Villeneuve DJ, Hembruff SL, Kirwan AF, Blais DE, Bonin M et al. Cross-resistance studies of isogenic drug-resistant breast tumor cell lines support recent clinical evidence suggesting that sensitivity to paclitaxel may be strongly compromised by prior doxorubicin exposure. Breast Cancer Res Treat 2004; 85: 31–51.

    Article  CAS  PubMed  Google Scholar 

  16. Reed K, Hembruff SL, Laberge ML, Villeneuve DJ, Cote GB, Parissenti AM . Hypermethylation of the ABCB1 downstream gene promoter accompanies ABCB1 gene amplification and increased expression in docetaxel-resistant MCF-7 breast tumor cells. Epigenetics 2008; 3: 270–280.

    Article  PubMed  Google Scholar 

  17. Hembruff SL, Villeneuve DJ, Parissenti AM . The optimization of quantitative reverse transcription PCR for verification of cDNA microarray data. Anal Biochem 2005; 345: 237–249.

    Article  CAS  PubMed  Google Scholar 

  18. Gomez-Martinez A, Garcia-Morales P, Carrato A, Castro-Galache MD, Soto JL, Carrasco-Garcia E et al. Post-transcriptional regulation of P-glycoprotein expression in cancer cell lines. Mol Cancer Res 2007; 5: 641–653.

    Article  CAS  PubMed  Google Scholar 

  19. Yague E, Armesilla AL, Harrison G, Elliott J, Sardini A, Higgins CF et al. P-glycoprotein (MDR1) expression in leukemic cells is regulated at two distinct steps, mRNA stabilization and translational initiation. J Biol Chem 2003; 278: 10344–10352.

    Article  PubMed  Google Scholar 

  20. Wang YC, Juric D, Francisco B, Yu RX, Duran GE, Chen GK et al. Regional activation of chromosomal arm 7q with and without gene amplification in taxane-selected human ovarian cancer cell lines. Genes Chromosomes Cancer 2006; 45: 365–374.

    Article  CAS  PubMed  Google Scholar 

  21. Kitada K, Yamasaki T . The MDR1/ABCB1 regional amplification in large inverted repeats with asymmetric sequences and microhomologies at the junction sites. Cancer Genet Cytogenet 2007; 178: 120–127.

    Article  CAS  PubMed  Google Scholar 

  22. Yabuki N, Sakata K, Yamasaki T, Terashima H, Mio T, Miyazaki Y et al. Gene amplification and expression in lung cancer cells with acquired paclitaxel resistance. Cancer Genet Cytogenet 2007; 173: 1–9.

    Article  CAS  PubMed  Google Scholar 

  23. Chen GK, Lacayo NJ, Duran GE, Wang Y, Bangs CD, Rea S et al. Preferential expression of a mutant allele of the amplified MDR1 (ABCB1) gene in drug-resistant variants of a human sarcoma. Genes Chromosomes Cancer 2002; 34: 372–383.

    Article  PubMed  Google Scholar 

  24. Endicott JA, Ling V . The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem 1989; 58: 137–171.

    Article  CAS  PubMed  Google Scholar 

  25. Tada Y, Wada M, Kuroiwa K, Kinugawa N, Harada T, Nagayama J et al. MDR1 gene overexpression and altered degree of methylation at the promoter region in bladder cancer during chemotherapeutic treatment. Clin Cancer Res 2000; 6: 4618–4627.

    CAS  PubMed  Google Scholar 

  26. Reed K, Poulin ML, Yan L, Parissenti AM . Comparison of bisulfite sequencing PCR with pyrosequencing for measuring differences in DNA methylation. Anal Biochem 2010; 397: 96–106.

    Article  CAS  PubMed  Google Scholar 

  27. El-Osta A, Kantharidis P, Zalcberg JR, Wolffe AP . Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated human multidrug resistance gene (MDR1) on activation. Mol Cell Biol 2002; 22: 1844–1857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Palii SS, Van Emburgh BO, Sankpal UT, Brown KD, Robertson KD . DNA methylation inhibitor 5-Aza-2′-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol Cell Biol 2008; 28: 752–771.

    Article  CAS  PubMed  Google Scholar 

  29. Milani L, Lundmark A, Nordlund J, Kiialainen A, Flaegstad T, Jonmundsson G et al. Allele-specific gene expression patterns in primary leukemic cells reveal regulation of gene expression by CpG site methylation. Genome Res 2009; 19: 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mickley LA, Lee JS, Weng Z, Zhan Z, Alvarez M, Wilson W et al. Genetic polymorphism in MDR-1: a tool for examining allelic expression in normal cells, unselected and drug-selected cell lines, and human tumors. Blood 1998; 91: 1749–1756.

    CAS  PubMed  Google Scholar 

  31. Plass C . Cancer epigenomics. Hum Mol Genet 2002; 11: 2479–2488.

    Article  CAS  PubMed  Google Scholar 

  32. Ueda K, Pastan I, Gottesman MM . Isolation and sequence of the promoter region of the human multidrug-resistance (P-glycoprotein) gene. J Biol Chem 1987; 262: 17432–17436.

    CAS  PubMed  Google Scholar 

  33. Madden MJ, Morrow CS, Nakagawa M, Goldsmith ME, Fairchild CR, Cowan KH . Identification of 5′ and 3′ sequences involved in the regulation of transcription of the human mdr1 gene in vivo. J Biol Chem 1993; 268: 8290–8297.

    CAS  PubMed  Google Scholar 

  34. Chin KV, Tanaka S, Darlington G, Pastan I, Gottesman MM . Heat shock and arsenite increase expression of the multidrug resistance (MDR1) gene in human renal carcinoma cells. J Biol Chem 1990; 265: 221–226.

    CAS  PubMed  Google Scholar 

  35. Scotto KW . Transcriptional regulation of ABC drug transporters. Oncogene 2003; 22: 7496–7511.

    Article  CAS  Google Scholar 

  36. Scotto KW, Egan DA . Transcriptional regulation of MDR genes. Cytotechnology 1998; 27: 257–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hu Z, Jin S, Scotto KW . Transcriptional activation of the MDR1 gene by UV irradiation. Role of NF-Y and Sp1. J Biol Chem 2000; 275: 2979–2985.

    Article  CAS  PubMed  Google Scholar 

  38. Cornwell MM, Smith DE . SP1 activates the MDR1 promoter through one of two distinct G-rich regions that modulate promoter activity. J Biol Chem 1993; 268: 19505–19511.

    CAS  PubMed  Google Scholar 

  39. Goldsmith ME, Madden MJ, Morrow CS, Cowan KH . A Y-box consensus sequence is required for basal expression of the human multidrug resistance (mdr1) gene. J Biol Chem 1993; 268: 5856–5860.

    CAS  PubMed  Google Scholar 

  40. Miyazaki M, Kohno K, Uchiumi T, Tanimura H, Matsuo K, Nasu M et al. Activation of human multidrug resistance-1 gene promoter in response to heat shock stress. Biochem Biophys Res Commun 1992; 187: 677–684.

    Article  CAS  PubMed  Google Scholar 

  41. Borellini F, Aquino A, Josephs SF, Glazer RI . Increased expression and DNA-binding activity of transcription factor Sp1 in doxorubicin-resistant HL-60 leukemia cells. Mol Cell Biol 1990; 10: 5541–5547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sampath J, Sun D, Kidd VJ, Grenet J, Gandhi A, Shapiro LH et al. Mutant p53 cooperates with ETS and selectively upregulates human MDR1 not MRP1. J Biol Chem 2001; 276: 39359–39367.

    Article  CAS  PubMed  Google Scholar 

  43. Ince TA, Scotto KW . Stable transfection of the P-glycoprotein promoter reproduces the endogenous overexpression phenotype: the role of MED-1. Cancer Res 1996; 56: 2021–2024.

    CAS  PubMed  Google Scholar 

  44. Fujita T, Ito K, Izumi H, Kimura M, Sano M, Nakagomi H et al. Increased nuclear localization of transcription factor Y-box binding protein 1 accompanied by up-regulation of P-glycoprotein in breast cancer pretreated with paclitaxel. Clin Cancer Res 2005; 11 (24 Part1): 8837–8844.

    Article  CAS  PubMed  Google Scholar 

  45. Ogura M, Takatori T, Sugimoto Y, Tsuruo T . Identification and characterization of three DNA-binding proteins on the promoter of the human MDR1 gene in drug-sensitive and -resistant cells. Jpn J Cancer Res 1991; 82: 1151–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Johnson RA, Ince TA, Scotto KW . Transcriptional repression by p53 through direct binding to a novel DNA element. J Biol Chem 2001; 276: 27716–27720.

    Article  CAS  PubMed  Google Scholar 

  47. Ogretmen B, Safa AR . Identification and characterization of the MDR1 promoter-enhancing factor 1 (MEF1) in the multidrug resistant HL60/VCR human acute myeloid leukemia cell line. Biochemistry 2000; 39: 194–204.

    Article  CAS  PubMed  Google Scholar 

  48. Combates NJ, Rzepka RW, Chen YN, Cohen D . NF-IL6, a member of the C/EBP family of transcription factors, binds and transactivates the human MDR1 gene promoter. J Biol Chem 1994; 269: 29715–29719.

    CAS  PubMed  Google Scholar 

  49. Ogretmen B, Safa AR . Negative regulation of MDR1 promoter activity in MCF-7, but not in multidrug resistant MCF-7/Adr, cells by cross-coupled NF-kappa B/p65 and c-Fos transcription factors and their interaction with the CAAT region. Biochemistry 1999; 38: 2189–2199.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Matthew L Poulin and Liying Yan of EpigenDx (Worchester, MA, USA) for primer design and performing pyrosequencing experiments assessing ABCB1 promoter methylation in clonal isolates of MCF-7CC and MCF-7TAX-2 cells. We also thank Dr Gilbert Côté, Bernice Suitor and Anne McBain of the Sudbury Regional Hospital for providing technical support for the FISH experiments. Funding: This project was funded by the Canadian Breast Cancer Foundation—Ontario Region. This work was also supported, in part, by funds from the Canadian Institutes of Health Research (Grant MOP-89993), the Northern Cancer Research Foundation and core support funds from Cancer Care Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Parissenti.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, K., Hembruff, S., Sprowl, J. et al. The temporal relationship between ABCB1 promoter hypomethylation, ABCB1 expression and acquisition of drug resistance. Pharmacogenomics J 10, 489–504 (2010). https://doi.org/10.1038/tpj.2010.1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2010.1

Keywords

This article is cited by

Search

Quick links