Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Time flies like an arrow. Fruit flies like crack?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. McClung C, Hirsh J . Stereotypic behavioral responses to free-base cocaine and the development of behavioral sensitization in Drosophila melanogaster Curr Biol 1998 8: 109–112

    Article  CAS  Google Scholar 

  2. Moore MS et al . Ethanol intoxication in Drosophila: genetic and pharmacological evidence for regulation by the cAMP signaling pathway Cell 1998 93: 997–1007

    Article  CAS  Google Scholar 

  3. Bainton RJ et al . Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila Curr Biol 2000 10: 187–194

    Article  CAS  Google Scholar 

  4. Scholz H, Ramond J, Singh CM, Heberlein U . Functional ethanol tolerance in Drosophila Neuron 2000 28: 261–271

    Article  CAS  Google Scholar 

  5. Robinson TE, Berridge KE . The psychology and neurobiology of addiction: an incentive-sensitization view Addiction 2000 (Suppl 2) 95: S91–S117

    PubMed  Google Scholar 

  6. Lieberman JA, Sheitman BB, Kinon BJ . Neurochemical sensitization in the pathophysiology of schizophrenia: deficits and dysfunction in neuronal regulation and plasticity Neuropsychopharmacology 1997 17: 205–229

    Article  CAS  Google Scholar 

  7. Wolf ME . The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants Prog Neurobiol 1998 54: 679–720

    Article  CAS  Google Scholar 

  8. White FJ, Hu X-T, Henry DJ, Zhang S-F . In: Hammer RP (ed) The Neurobiology of Cocaine: Cellular and Molecular Mechanisms CRC Press: Boca Raton 1995 pp 81–98

  9. Vanderschuren LJ, Kalivas PW . Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies Psychopharmacology (Berl) 2000 151: 99–120

    Article  CAS  Google Scholar 

  10. Nestler EJ, Aghajanian GK . Molecular and cellular basis of addiction Science 1997 278: 58–63

    Article  CAS  Google Scholar 

  11. Li H, Chaney S, Forte M, Hirsh J . Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster Curr Biol 2000 10: 211–214

    Article  CAS  Google Scholar 

  12. Park S, Sedore S, Cronmiller C, Hirsh J . PKAII-deficient Drosophila are viable but show developmental, circadian and drug response phenotypes J Biol Chem 2000 275: 20588–20596

    Article  CAS  Google Scholar 

  13. McClung C, Hirsh J . The trace amine tyramine is essential for sensitization to cocaine in Drosophila Curr Biol 1999 9: 853–860

    Article  CAS  Google Scholar 

  14. Bönisch H, Trendelenburg U. In: Trendelenburg U, Weiner N (eds) Catecholamines. Handbook of Experimental Pharmacology Springer-Verlag: Berlin 1988 pp 247–248

  15. Porzgen P, Park SK, Hirsh J, Sonders MS, Amara SG . The antidepressant-sensitive dopamine transporter in Drosophila melanogaster: a primordial carrier for catecholamines Mol Pharmacol 2001 59: 83–95

    Article  CAS  Google Scholar 

  16. Andretic R, Chaney S, Hirsh J . Circadian genes are required for cocaine sensitization in Drosophila Science 1999 285: 1066–1068

    Article  CAS  Google Scholar 

  17. Scully AL, Kay SA . Time flies for Drosophila Cell 2000 100: 297–300

    Article  CAS  Google Scholar 

  18. Gaytan O, Swann A, Dafny N . Diurnal differences in rat’s motor response to amphetamine Eur J Pharmacol 1998 345: 119–128

    Article  CAS  Google Scholar 

  19. Gaytan O, Swann A, Dafny N . Time-dependent differences in the rat’s motor response to amphetamine Pharmacol Biochem Behav 1998 59: 459–467

    Article  CAS  Google Scholar 

  20. Gaytan O, Lewis C, Swann A, Dafny N . Diurnal differences in amphetamine sensitization Eur J Pharmacol 1999 374: 1–9

    Article  CAS  Google Scholar 

  21. Baird TJ, Gauvin D . Characterization of cocaine self-administration and pharmacokinetics as a function of time of day in the rat Pharmacol Biochem Behav 2000 65: 289–99

    Article  CAS  Google Scholar 

  22. White W, Feldon J, Heidbreder CA, White IM . Effects of administering cocaine at the same versus varying times of day on circadian activity patterns and sensitization in rats Behav Neurosci 2000 114: 972–982

    Article  CAS  Google Scholar 

  23. Honma K, Honma S, Hiroshige T . Disorganization of the rat activity rhythm by chronic treatment with methamphetamine Physiol Behav 1986 38: 687–695

    Article  CAS  Google Scholar 

  24. Honma K, Honma S, Hiroshige T . Activity rhythms in the circadian domain appear in suprachiasmatic nuclei lesioned rats given methamphetamine Physiol Behav 1987 40: 767–774

    Article  CAS  Google Scholar 

  25. Honma S, Honma K . Phase-dependent phase shift of methamphetamine-induced circadian rhythm by haloperidol in SCN-lesioned rats Brain Res 1995 674: 283–290

    Article  CAS  Google Scholar 

  26. Andretic R, Hirsh J . Circadian modulation of dopamine receptor responsiveness in Drosophila melanogaster Proc Natl Acad Sci USA 2000 97: 1873–1878

    Article  CAS  Google Scholar 

  27. Gekakis N et al . Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL Science 1995 270: 811–815

    Article  CAS  Google Scholar 

  28. Myers MP, Wager-Smith K, Wesley CS, Young MW, Sehgal A . Positional cloning and sequence analysis of the Drosophila clock gene, timeless Science 1995 270: 805–808

    Article  CAS  Google Scholar 

  29. Sehgal A, Price JL, Man B, Young MW . Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless Science 1994 263: 1603–1606

    Article  CAS  Google Scholar 

  30. Vosshall LB, Price JL, Sehgal A, Saez L, Young, MW . Block in nuclear localization of period protein by a second clock mutation, timeless Science 1994 263: 1606–1609

    Article  CAS  Google Scholar 

  31. Saez L, Young MW . Regulation of nuclear entry of the Drosophila clock proteins period and timeless Neuron 1996 17: 911–920

    Article  CAS  Google Scholar 

  32. Rothenfluh A, Young MW, Saez L . A TIMELESS-independent function for PERIOD proteins in the Drosophila clock Neuron 2000 26: 505–514

    Article  CAS  Google Scholar 

  33. Burnette WB et al . Human norepinephrine transporter kinetics using rotating disk electrode voltammetry Anal Chem 1996 68: 2932–2938

    Article  CAS  Google Scholar 

  34. Chen N, Trowbridge CG, Justice JB Jr . Voltammetric studies on mechanisms of dopamine efflux in the presence of substrates and cocaine from cells expressing human norepinephrine transporter J Neurochem 1998 71: 653–665

    Article  CAS  Google Scholar 

  35. Buckley KM, Melikian HE, Provoda CJ, Waring MT . Regulation of neuronal function by protein trafficking: a role for the endosomal pathway J Physiol (Lond) 2000 525 Pt 1: 11–19

    Article  Google Scholar 

  36. Blakely RD, Bauman AL . Biogenic amine transporters: regulation in flux Curr Opin Neurobiol 2000 10: 328–336

    Article  CAS  Google Scholar 

  37. Arakawa S et al . Cloning, localization, and permanent expression of a Drosophila octopamine receptor Neuron 1990 4: 343–354

    Article  CAS  Google Scholar 

  38. Robb S et al . Agonist-specific coupling of a cloned Drosophila octopamine/tyramine receptor to multiple second messenger systems EMBO J 1994 13: 1325–1330

    Article  CAS  Google Scholar 

  39. Sidiropoulou K et al . Basal hyperactivity and behavioral sensitization to cocaine in clock mutant mice SFN Abstracts 2000 26: 525.

    Google Scholar 

Download references

Acknowledgements

Work from my laboratory mentioned in this review is supported by NIH grant GM/DA 27813. I thank the current members of my laboratory and Colleen McClung for helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Hirsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirsh, J. Time flies like an arrow. Fruit flies like crack?. Pharmacogenomics J 1, 97–100 (2001). https://doi.org/10.1038/sj.tpj.6500020

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500020

This article is cited by

Search

Quick links