Targeted gene repair

Targeted gene repair is a technique used to correct a mutation at a specific site in an episome or chromosome. It uses synthetic oligonucleotides together with the cell's inherent DNA repair system to direct single base pair changes.

Featured

Latest Research and Reviews

  • Research |

    CRISPR–CasX represents a distinct RNA-guided platform that is functionally separate from Cas9 and Cas12a and is active for bacterial and human genome modification.

    • Jun-Jie Liu
    • , Natalia Orlova
    • , Benjamin L. Oakes
    • , Enbo Ma
    • , Hannah B. Spinner
    • , Katherine L. M. Baney
    • , Jonathan Chuck
    • , Dan Tan
    • , Gavin J. Knott
    • , Lucas B. Harrington
    • , Basem Al-Shayeb
    • , Alexander Wagner
    • , Julian Brötzmann
    • , Brett T. Staahl
    • , Kian L. Taylor
    • , John Desmarais
    • , Eva Nogales
    •  & Jennifer A. Doudna
    Nature 566, 218-223
  • Research |

    Cas9-specific antibodies and reactive T cells are found in the majority of healthy adult human serum samples analyzed. Such preexisting adaptive immunity should be taken into consideration as the CRISPR–Cas9 system moves toward clinical trials.

    • Carsten T. Charlesworth
    • , Priyanka S. Deshpande
    • , Daniel P. Dever
    • , Joab Camarena
    • , Viktor T. Lemgart
    • , M. Kyle Cromer
    • , Christopher A. Vakulskas
    • , Michael A. Collingwood
    • , Liyang Zhang
    • , Nicole M. Bode
    • , Mark A. Behlke
    • , Beruh Dejene
    • , Brandon Cieniewicz
    • , Rosa Romano
    • , Benjamin J. Lesch
    • , Natalia Gomez-Ospina
    • , Sruthi Mantri
    • , Mara Pavel-Dinu
    • , Kenneth I. Weinberg
    •  & Matthew H. Porteus
    Nature Medicine 25, 249-254
  • Research |

    In human cells, a humanized mouse model and non-human primates, CRISPR/Cas9 corrects the splicing defect in a gene associated with congenital blindness.

    • Morgan L. Maeder
    • , Michael Stefanidakis
    • , Christopher J. Wilson
    • , Reshica Baral
    • , Luis Alberto Barrera
    • , George S. Bounoutas
    • , David Bumcrot
    • , Hoson Chao
    • , Dawn M. Ciulla
    • , Jennifer A. DaSilva
    • , Abhishek Dass
    • , Vidya Dhanapal
    • , Tim J. Fennell
    • , Ari E. Friedland
    • , Georgia Giannoukos
    • , Sebastian W. Gloskowski
    • , Alexandra Glucksmann
    • , Gregory M. Gotta
    • , Hariharan Jayaram
    • , Scott J. Haskett
    • , Bei Hopkins
    • , Joy E. Horng
    • , Shivangi Joshi
    • , Eugenio Marco
    • , Rina Mepani
    • , Deepak Reyon
    • , Terence Ta
    • , Diana G. Tabbaa
    • , Steven J. Samuelsson
    • , Shen Shen
    • , Maxwell N. Skor
    • , Pam Stetkiewicz
    • , Tongyao Wang
    • , Clifford Yudkoff
    • , Vic E. Myer
    • , Charles F. Albright
    •  & Haiyan Jiang
    Nature Medicine 25, 229-233
  • Research | | open

    Therapeutic genome engineering relies on the development of reliable, robust and versatile tools. Here the authors develop Cas9-Cas9 chimeras with high target site activity that generate predictable deletions.

    • Mehmet Fatih Bolukbasi
    • , Pengpeng Liu
    • , Kevin Luk
    • , Samantha F. Kwok
    • , Ankit Gupta
    • , Nadia Amrani
    • , Erik J. Sontheimer
    • , Lihua Julie Zhu
    •  & Scot A. Wolfe

News and Comment

  • News and Views |

    Counteracting splice defects in the CEP290 gene using RNA antisense oligonucleotides or Cas9-mediated gene editing is a therapeutic strategy for Leber congenital amaurosis type 10—a severe untreatable retinal dystrophy leading to childhood blindness.

    • José Alain Sahel
    •  & Deniz Dalkara
    Nature Medicine 25, 198-199
  • Research Highlights |

    Cas9 induces larger-than-anticipated mutations in mouse and human cells. In the latter, efficient editing depends on inhibition of the DNA-damage-repair protein p53.

    • Nicole Rusk
    Nature Methods 15, 569
  • Editorial |

    With the advent of precision genome editing, the ability to modify living organisms has proceeded with remarkable speed and breadth. Any application of this technology to the human germ line must be tightly coupled to deliberate consideration of the consequences, both scientific and social, of introducing heritable alterations to the human population. We recommend constant oversight and evaluation of human germline genome editing to balance prudence with discovery, and risk with progress.

    Nature Genetics 49, 653