Optical physics articles within Nature Communications

Featured

  • Article
    | Open Access

    All holographic displays and imaging techniques are fundamentally limited by the étendue supported by existing spatial light modulators. Here, the authors report on using artificial intelligence (AI) to learn an étendue expanding element that effectively increases étendue by two orders of magnitude.

    • Ethan Tseng
    • , Grace Kuo
    •  & Felix Heide
  • Article
    | Open Access

    An efficient way of realising a large number of telecom single-photon emitters for quantum communication is still missing. Here, the authors use a wide-field imaging technique for fast localization of single InAs/InP quantum dots, which are then integrated into circular Bragg grating cavities featuring high single-photon purity and indistinguishability.

    • Paweł Holewa
    • , Daniel A. Vajner
    •  & Elizaveta Semenova
  • Article
    | Open Access

    Correlated insulator states of moire excitons in transition metal dichalcogenide heterostructures have attracted significant attention recently. Here the authors use time-resolved pump-probe spectroscopy to demonstrate the effects of non-equilibrium correlations of moire excitons in WSe2/WS2 heterobilayers.

    • Jinjae Kim
    • , Jiwon Park
    •  & Hyunyong Choi
  • Article
    | Open Access

    Optical recurrent neural networks present a unique challenge for photonic machine learning. Here, the authors experimentally show the first optoacoustic recurrent operator based on stimulated Brillouin scattering which may unlock a new class of optical neural networks with recurrent functionality.

    • Steven Becker
    • , Dirk Englund
    •  & Birgit Stiller
  • Article
    | Open Access

    Here, the authors perform Faraday rotation spectroscopy around the excitonic transitions in hBN-encapsulated WSe2 and MoSe2 monolayers, and interlayer excitons in MoS2 bilayers. They measure a large Verdet constant - 1.9 × 107 deg T¹cm¹ for monolayers, and attribute it to the giant oscillator strength and high g-factor of the excitons.

    • Benjamin Carey
    • , Nils Kolja Wessling
    •  & Ashish Arora
  • Article
    | Open Access

    Parity detection is essential in quantum error correction. Here, authors propose a reliable joint parity measurement (JPM) scheme inspired by stimulated emission and experimentally implement the weight-2(4) JPM scheme in a tunable coupling superconducting circuit, which shows comparable performance to the standard CNOT-gate based scheme.

    • Sainan Huai
    • , Kunliang Bu
    •  & Yicong Zheng
  • Article
    | Open Access

    Band engineering in optics allows the design of unconventional forms of light with potential optoelectronic applications. Here, the authors realize slow-light intercavity polaritons in an array of coupled cavities, the photonic architecture enables the spatial segregation of photons and excitons

    • Yesenia A. García Jomaso
    • , Brenda Vargas
    •  & Giuseppe Pirruccio
  • Article
    | Open Access

    2D metallic single crystals are sought after for nanophotonic applications, but their synthesis remains challenging. Here, the authors report an atomic level precision etching method to fabricate large-area crystalline gold flakes with nanometre thickness, showing enhanced plasmonic and nonlinear optical properties.

    • Chenxinyu Pan
    • , Yuanbiao Tong
    •  & Pan Wang
  • Article
    | Open Access

    The advent of isolated attosecond XUV pulse sources marks a new era in attosecond science, pivotal for the investigation of core electron dynamics. Here the authors discover that the coherent Raman coupling between the cation states leads to extra timedelay between different transition channels by applying the attosecond transient absorption spectroscopy on the investigation of complex dynamics of strong field ionization of Krypton.

    • Li Wang
    • , Guangru Bai
    •  & Zengxiu Zhao
  • Article
    | Open Access

    Usual multiqubit entangled states can be described using the graph formalism, where each edge connects only two qubits. Here, instead, the authors use a reprogrammable silicon photonics chip to showcase preparation, verification and processing of arbitrary four-qubit hypergraph states, where hyperedges describe entanglement within a subset of many qubits.

    • Jieshan Huang
    • , Xudong Li
    •  & Jianwei Wang
  • Article
    | Open Access

    Anisotropic light-matter excitations in van der Waals materials are expected to have an impact on nanophotonics applications. Here, the authors report the observation of canalized in-plane mid-infrared plasmons in the semimetallic phase of WS2 and demonstrate their electrical tunability via ion intercalation.

    • Qiaoxia Xing
    • , Jiasheng Zhang
    •  & Hugen Yan
  • Article
    | Open Access

    Manipulating quantum information encoded in a bosonic mode requires sizeable and controllable nonlinearities, but superconducting devices’ strong nonlinearities are normally static. Here, the authors use a SNAIL to suppress static nonlinearities and use drive-dependent ones to reach universal control of a bosonic mode.

    • Axel M. Eriksson
    • , Théo Sépulcre
    •  & Simone Gasparinetti
  • Article
    | Open Access

    Polarization serves as an excellent information encoding carrier. Here, authors expand the metasurface encoding dimensionality of polarization information by engineering the Poincaré Sphere trajectory with generalized Malus’ law, unveiling new opportunities for advanced polarization optics.

    • Zi-Lan Deng
    • , Meng-Xia Hu
    •  & Andrea Alù
  • Article
    | Open Access

    Topological properties of a photonic environment are crucial to engineer robust photon-mediated interactions between quantum emitters. Here, the authors find general theorems on the topology of photon-mediated interactions, unveiling the phenomena of topological preservation and reversal.

    • Federico Roccati
    • , Miguel Bello
    •  & Angelo Carollo
  • Article
    | Open Access

    T centers in silicon are promising candidates for quantum applications yet suffer from weak optical transitions. Here, by integrating with a silicon nanocavity, the authors demonstrate an enhancement of the photon emission rate for a single T center.

    • Adam Johnston
    • , Ulises Felix-Rendon
    •  & Songtao Chen
  • Article
    | Open Access

    Miniaturized and efficient optical modulators are desired for data transmission, processing and communication. Here, the authors report the fabrication of exciton-polariton Mach–Zehnder modulators based on thin WS2 waveguides with a footprint of ~30 μm², modulation ratio up to −6.20 dB and nanosecond response times.

    • Seong Won Lee
    • , Jong Seok Lee
    •  & Su-Hyun Gong
  • Article
    | Open Access

    Polaritons, light-matter hybridized quasiparticles, are the fundamental excitation of strong coupling systems and are widely applicable in information technologies. Here the authors applied the concept of time-of-flight measurement in terahertz induced second harmonic generation experiments in various systems to comprehensively study the dispersion relation of phonon-polaritons and reveal potential spin-lattice couplings.

    • Tianchuang Luo
    • , Batyr Ilyas
    •  & Nuh Gedik
  • Article
    | Open Access

    Interfacing single-photon emitters (SPEs) with high-finesse cavities can prevent decoherence processes, especially at elevated temperature, but its implementation remains challenging. Here, the authors report room-temperature strong coupling of SPEs in hexagonal boron nitride with a dielectric cavity based on bound states in the continuum, showing a Rabi splitting of ~ 4 meV.

    • T. Thu Ha Do
    • , Milad Nonahal
    •  & Son Tung Ha
  • Article
    | Open Access

    Metasurfaces processing incoming images have been proposed in the context of real space operations. Here, the authors demonstrate mathematical operations, such as differentiation, on the angular spectrum of an image using metasurfaces, which can be used to enhance spectral features of an image.

    • Ming Deng
    • , Michele Cotrufo
    •  & Lin Chen
  • Article
    | Open Access

    Malakar et al. investigate the photochemical dynamics in the isomerization of bacteriorhodopsin light and dark-adapted forms and in the first photocycle intermediate, K. The results prompt a reevaluation of the counter ion model, revealing that a different protonation then that shown in the classic quadrupole so far considered must be employed to account for the experimental data.

    • Partha Malakar
    • , Samira Gholami
    •  & Sanford Ruhman
  • Comment
    | Open Access

    I argue that a surface emitting laser that remains single mode irrespective of its size, a scale-invariant laser, should of necessity also waste light at the edge. This is a fundamental departure from the Schawlow-Townes two-mirror strategy that keeps light away from mirrors and edges to preserve gain and minimize loss. The strategy was implemented in the recent discovery of the Berkeley Surface Emitting Laser (BerkSEL).

    • Boubacar Kanté
  • Article
    | Open Access

    Principal optical axes define light-matter interactions in crystals and they are usually assumed to be stationary. Here, the authors report the observation of wavelength-dependent principal optical axes in ternary van der Waals crystals (ReS2 and ReSe2), leading to wavelength-switchable propagation directions of their waveguide modes.

    • Georgy A. Ermolaev
    • , Kirill V. Voronin
    •  & Kostya S. Novoselov
  • Article
    | Open Access

    Previous research reported enhanced emission from spin defects in hBN by coupling to optical resonators; however, this approach has limited scalability. Here the authors use a monolithic metasurface featuring quasi bound states fabricated from hBN to enhance photoemission and optical spin-readout efficiency of defects in the same material.

    • Luca Sortino
    • , Angus Gale
    •  & Andreas Tittl
  • Article
    | Open Access

    The authors propose a generalization of the equipartition theorem of thermal physics to account for non-Hermitian trapping forces, relevant for the problems in non-equilibrium open systems and advanced nanotechnology.

    • Xiao Li
    • , Yongyin Cao
    •  & Jack Ng
  • Article
    | Open Access

    Using gas cells for spectroscopic studies opens possibility for miniaturized platforms that can be integrated with other optical components. Here the authors demonstrate molecular rovibrational spectroscopy by confining molecules in a cell of subwavelength thickness.

    • Guadalupe Garcia Arellano
    • , Joao Carlos de Aquino Carvalho
    •  & Athanasios Laliotis
  • Article
    | Open Access

    Via Raman and infrared spectroscopy measurements, X. Zan et al. find that rhombohedral ABC trilayer graphene has stronger electron/infrared-phonon coupling than Bernal ABA trilayer graphene.

    • Xiaozhou Zan
    • , Xiangdong Guo
    •  & Guangyu Zhang
  • Article
    | Open Access

    The authors show an original approach to achieve strong light-matter interaction harnessing the coupling between plasmonic resonators and the Landau resonances of an underlying quantum well, demonstrating remarkably high coupling strengths.

    • Joshua Mornhinweg
    • , Laura Katharina Diebel
    •  & Christoph Lange
  • Article
    | Open Access

    S. Gassner et al. propose using light pulses to drive a centrosymmetric s-wave superconductor with strong spin-orbit coupling into a metastable triplet p-wave superconductor with non-trivial topology. The two superconducting orders must be closely competing in equilibrium and the light pulse must break a generalized, dynamic form of inversion symmetry.

    • Steven Gassner
    • , Clara S. Weber
    •  & Martin Claassen
  • Article
    | Open Access

    In-sensor computing requires detectors with polarity reconfigurability and linear responsivity. Pang et al. report a CsPbBr3 perovskite single crystal X-ray detector for edge extraction imaging with a data compression ratio of 46.4% and classification task with an accuracy of 100%.

    • Jincong Pang
    • , Haodi Wu
    •  & Guangda Niu
  • Article
    | Open Access

    Here the authors demonstrate a strong interaction between the generated solitons and background light in a Brillouin-Kerr microcomb system. Based on this unique physical mechanism, they achieve a monostable single soliton microcomb and a turnkey single-soliton microcomb without employing any optical/electrical control or feedback.

    • Menghua Zhang
    • , Shulin Ding
    •  & Xiaoshun Jiang
  • Article
    | Open Access

    Spin-orbit interaction, and the associated phenomena, is commonly observed in crystalline structure pumped with circularly polarised beam. Here, the authors showed that this is not the case, and used nonlinear thin film to produce vortex beams of second-harmonic light.

    • Domenico de Ceglia
    • , Laure Coudrat
    •  & Costantino De Angelis
  • Article
    | Open Access

    The researchers showcase swept-coded aperture real-time femtophotography—an all-optical single-shot computational imaging modality at up to 156.3 trillion frames per second—video-records transient absorption in a semiconductor and ultrafast demagnetization of a metal alloy.

    • Jingdan Liu
    • , Miguel Marquez
    •  & Jinyang Liang
  • Article
    | Open Access

    Here the authors experimentally realized a systematic approach to synthesize arbitrary-size two-dimensional all-band-flat photonic lattices, which pave a route for investigating flat-band related physics such as slow-light, nonlinear breathing, and dispersionless image transmission.

    • Jing Yang
    • , Yuanzhen Li
    •  & Fei Gao
  • Article
    | Open Access

    Applications of spontaneous symmetry breaking are hindered by unavoidable imperfections. Here, the authors reveal how a phase defect provides topological robustness to this process, enabling a bias free realization without fine tuning of parameters.

    • Stéphane Coen
    • , Bruno Garbin
    •  & Julien Fatome
  • Article
    | Open Access

    Differential absorption of polarized light, called dichroism, does not exist in amorphous solids due to the disordered arrangements of atoms. Here, the authors demonstrate that dichroism is intrinsic to all solids and can be controlled using helical light beams carrying orbital angular momentum.

    • Ashish Jain
    • , Jean-Luc Bégin
    •  & Ravi Bhardwaj