Nuclear astrophysics

Nuclear astrophysics is the study of nuclear-level processes that occur naturally in space. Notably, this includes understanding the chain of fusion events, or nucleosynthesis, that occurs in stars, and how this can be detected from a distance by measuring the radiation these processes produce.

Latest Research and Reviews

  • Research |

    Star TYC 429-2097-1 contains the most lithium of any giant star, but lithium is too fragile to survive in the deep layers of a stellar atmosphere. How does the enrichment arise? Yan et al. rule out external sources (engulfment, accretion), favouring an internal process called ‘extra mixing’.

    • Hong-Liang Yan
    • , Jian-Rong Shi
    • , Yu-Tao Zhou
    • , Yong-Shou Chen
    • , Er-Tao Li
    • , Suyalatu Zhang
    • , Shao-Lan Bi
    • , Ya-Qian Wu
    • , Zhi-Hong Li
    • , Bing Guo
    • , Wei-Ping Liu
    • , Qi Gao
    • , Jun-Bo Zhang
    • , Ze-Ming Zhou
    • , Hai-Ning Li
    •  & Gang Zhao
    Nature Astronomy 2, 790-795
  • Research |

    Lattice quantum chromodynamics and a method inspired by the Feynman–Hellmann theorem are used to make a theoretical determination of the nucleon axial coupling with a precision of one per cent, giving the value 1.271 ± 0.013.

    • C. C. Chang
    • , A. N. Nicholson
    • , E. Rinaldi
    • , E. Berkowitz
    • , N. Garron
    • , D. A. Brantley
    • , H. Monge-Camacho
    • , C. J. Monahan
    • , C. Bouchard
    • , M. A. Clark
    • , B. Joó
    • , T. Kurth
    • , K. Orginos
    • , P. Vranas
    •  & A. Walker-Loud
    Nature 558, 91-94
  • Research |

    Using an innovative method, the mass of a pulsar can be constrained using the maximum ‘glitch’ in the star’s rotational frequency: the bigger the glitch, the lower the mass. This method is used to estimate the mass of all observed glitchers.

    • P. M. Pizzochero
    • , M. Antonelli
    • , B. Haskell
    •  & S. Seveso
  • Research |

    Isotopic analyses of stardust have yet to single out a specific stellar origin for it. A revision of the proton-capture rate of 17O has helped to identify intermediate mass stars (4–8 solar masses) as the source of a large fraction of meteoritic stardust.

    • M. Lugaro
    • , A. I. Karakas
    • , C. G. Bruno
    • , M. Aliotta
    • , L. R. Nittler
    • , D. Bemmerer
    • , A. Best
    • , A. Boeltzig
    • , C. Broggini
    • , A. Caciolli
    • , F. Cavanna
    • , G. F. Ciani
    • , P. Corvisiero
    • , T. Davinson
    • , R. Depalo
    • , A. Di Leva
    • , Z. Elekes
    • , F. Ferraro
    • , A. Formicola
    • , Zs. Fülöp
    • , G. Gervino
    • , A. Guglielmetti
    • , C. Gustavino
    • , Gy. Gyürky
    • , G. Imbriani
    • , M. Junker
    • , R. Menegazzo
    • , V. Mossa
    • , F. R. Pantaleo
    • , D. Piatti
    • , P. Prati
    • , D. A. Scott
    • , O. Straniero
    • , F. Strieder
    • , T. Szücs
    • , M. P. Takács
    •  & D. Trezzi

News and Comment

  • News and Views |

    Deep-sea sediments reveal the production sites of the heaviest chemical elements in the Universe to be neutron star mergers — rare events that eject large amounts of mass — and not core-collapse supernovae.

    • Friedrich-Karl Thielemann
    Nature Physics 11, 993-994
  • News and Views |

    By swapping the roles of the target and beam in an experiment that is otherwise impossible to implement, researchers have confirmed the doubly magic nature of the neutron-rich radioactive tin isotope 132Sn.

    • Paul Cottle
    Nature 465, 430-431