Interlocked molecules

Interlocked molecules are molecular architectures formed from two or more components that are linked together mechanically; the entangled components are not connected through covalent bonds but cannot be separated without breaking a covalent bond. Examples of interlocked molecules include catenanes and rotaxanes.

Latest Research and Reviews

  • Research | | open

    Hierarchical non-intertwined ring-in-ring complexes are intriguing but challenging supramolecular targets. Here, the authors describe a box-in-box assembly based on radical-pairing interactions between two rigid diradical dicationic cyclophanes; the inner box can further accommodate guests to form Russian doll-like assemblies.

    • Kang Cai
    • , Mark C. Lipke
    • , Zhichang Liu
    • , Jordan Nelson
    • , Tao Cheng
    • , Yi Shi
    • , Chuyang Cheng
    • , Dengke Shen
    • , Ji-Min Han
    • , Suneal Vemuri
    • , Yuanning Feng
    • , Charlotte L. Stern
    • , William A. Goddard III
    • , Michael R. Wasielewski
    •  & J. Fraser Stoddart
  • Research | | open

    Molecular capsules typically bind only guests with volumes smaller than their cavities. Here, the authors find that a polyaromatic capsule accommodates linear amphiphilic oligomers in a length-dependent manner, whereas short chains are fully crammed into the cavity, long chains can be incorporated into the capsule in a threaded fashion.

    • Masahiro Yamashina
    • , Shunsuke Kusaba
    • , Munetaka Akita
    • , Takashi Kikuchi
    •  & Michito Yoshizawa
  • Research |

    A composite knot with nine crossings of the same handedness has been prepared from a hexameric circular helicate in 41% yield in a two-step synthesis. An isomeric cyclic [3]catenane topologically constrained to always have at least three twists within the links is also formed. Both topologies have a high degree of writhe, analogous to that of supercoiled DNA.

    • Liang Zhang
    • , Alexander J. Stephens
    • , Alina L. Nussbaumer
    • , Jean-François Lemonnier
    • , Pia Jurček
    • , Iñigo J. Vitorica-Yrezabal
    •  & David A. Leigh
    Nature Chemistry 10, 1083-1088
  • Research | | open

    Mechanically interlocked molecules are extensively applied as artificial molecular machines but rotaxane-branched dendrimers are rarely explored because of synthetic challenges. Here the authors present the construction of dual stimuli-responsive rotaxane-branched dendrimer which can be stimulated by DMSO or acetate ions.

    • Xu-Qing Wang
    • , Wei Wang
    • , Wei-Jian Li
    • , Li-Jun Chen
    • , Rui Yao
    • , Guang-Qiang Yin
    • , Yu-Xuan Wang
    • , Ying Zhang
    • , Junlin Huang
    • , Hongwei Tan
    • , Yihua Yu
    • , Xiaopeng Li
    • , Lin Xu
    •  & Hai-Bo Yang
  • Research | | open

    Molecules exhibiting Möbius topology are fascinating but challenging synthetic targets. Here, the authors report the elegant synthesis and crystal structure of a catenane formed from two fully conjugated, interlocked Möbius nanohoops, and use theoretical calculations to understand its conformational stability and aromaticity.

    • Yang-Yang Fan
    • , Dandan Chen
    • , Ze-Ao Huang
    • , Jun Zhu
    • , Chen-Ho Tung
    • , Li-Zhu Wu
    •  & Huan Cong

News and Comment

  • News and Views |

    Knots have been rigorously studied since the 1860s, but only in the past 30 years have they been made in the laboratory in molecular form. Now, the most complex small-molecule examples so far — a composite knot and an isomeric link, each with nine crossings — have been prepared.

    • Edward E. Fenlon
    Nature Chemistry 10, 1078-1079
  • News and Views |

    Both the topology and the mechanical strength of woven materials have inspired great synthetic efforts to replicate their structures at the nanoscale. Now, a triaxial weave has been prepared by self-assembly of a judiciously designed organic molecule through π–π and CH–π interactions.

    • Yi Liu
    Nature Chemistry 9, 1037-1038
  • News and Views |

    Molecular daisy-chain structures are typically made up of two interlocked components and can exhibit muscle-like contraction and extension in one dimension. Zinc-based multicomponent systems that can operate in two and three dimensions have now been designed and synthesized.

    • Karine Fournel-Marotte
    •  & Frédéric Coutrot
    Nature Chemistry 9, 105-106
  • News and Views |

    A chiral [2]rotaxane in which the asymmetry is derived from the way in which the two components are mechanically interlocked — rather than being encoded in the covalent connectivity of the components themselves — has been shown to act as an enantioselective organocatalyst.

    • Stephen M. Goldup
    Nature Chemistry 8, 404-406