Exotic atoms and molecules

Definition

Exotic atoms and molecules are forms of basic matter in which one subatomic particle is replaced by another with the same charge. For instance, an electron can be replaced with a muon, a pion or an antiproton. Positronium is made by swapping the proton in a hydrogen atom for a positron.

Latest Research and Reviews

  • Research | | open

    It is challenging to explore properties of heavy elements as they can only be produced artificially. Here, the authors demonstrate a high resolution spectroscopy method, studying the properties of actinium, which can be extended to the study of other elements located at the end of the periodic table.

    • R. Ferrer
    • , A. Barzakh
    • , B. Bastin
    • , R. Beerwerth
    • , M. Block
    • , P. Creemers
    • , H. Grawe
    • , R. de Groote
    • , P. Delahaye
    • , X. Fléchard
    • , S. Franchoo
    • , S. Fritzsche
    • , L. P. Gaffney
    • , L. Ghys
    • , W. Gins
    • , C. Granados
    • , R. Heinke
    • , L. Hijazi
    • , M. Huyse
    • , T. Kron
    • , Yu. Kudryavtsev
    • , M. Laatiaoui
    • , N. Lecesne
    • , M. Loiselet
    • , F. Lutton
    • , I. D. Moore
    • , Y. Martínez
    • , E. Mogilevskiy
    • , P. Naubereit
    • , J. Piot
    • , S. Raeder
    • , S. Rothe
    • , H. Savajols
    • , S. Sels
    • , V. Sonnenschein
    • , J-C Thomas
    • , E. Traykov
    • , C. Van Beveren
    • , P. Van den Bergh
    • , P. Van Duppen
    • , K. Wendt
    •  & A. Zadvornaya
  • Research | | open

    The 1S–2S transition in magnetically trapped atoms of antihydrogen is observed, and its frequency is shown to be consistent with that expected for hydrogen.

    • M. Ahmadi
    • , B. X. R. Alves
    • , C. J. Baker
    • , W. Bertsche
    • , E. Butler
    • , A. Capra
    • , C. Carruth
    • , C. L. Cesar
    • , M. Charlton
    • , S. Cohen
    • , R. Collister
    • , S. Eriksson
    • , A. Evans
    • , N. Evetts
    • , J. Fajans
    • , T. Friesen
    • , M. C. Fujiwara
    • , D. R. Gill
    • , A. Gutierrez
    • , J. S. Hangst
    • , W. N. Hardy
    • , M. E. Hayden
    • , C. A. Isaac
    • , A. Ishida
    • , M. A. Johnson
    • , S. A. Jones
    • , S. Jonsell
    • , L. Kurchaninov
    • , N. Madsen
    • , M. Mathers
    • , D. Maxwell
    • , J. T. K. McKenna
    • , S. Menary
    • , J. M. Michan
    • , T. Momose
    • , J. J. Munich
    • , P. Nolan
    • , K. Olchanski
    • , A. Olin
    • , P. Pusa
    • , C. Ø. Rasmussen
    • , F. Robicheaux
    • , R. L. Sacramento
    • , M. Sameed
    • , E. Sarid
    • , D. M. Silveira
    • , S. Stracka
    • , G. Stutter
    • , C. So
    • , T. D. Tharp
    • , J. E. Thompson
    • , R. I. Thompson
    • , D. P. van der Werf
    •  & J. S. Wurtele
    Nature 541, 506–510
  • Research | | open

    Rydberg molecules have potential for ultracold chemistry applications in light of their unconventional binding mechanism that provides high tunability. Here the authors observe and control butterfly Rydberg molecules, which are bound by a shape resonance in the electron-perturber scattering.

    • Thomas Niederprüm
    • , Oliver Thomas
    • , Tanita Eichert
    • , Carsten Lippe
    • , Jesús Pérez-Ríos
    • , Chris H. Greene
    •  & Herwig Ott

News and Comment