Exoplanets articles within Nature Communications

Featured

  • Article
    | Open Access

    Astrocombs serve as precision calibrators for astrophysical spectrographs by providing a regular sequence of optical lines on a multi-GHz grid. Here, the authors report the first broadband astrocomb in the UV to blue-green spectral region, where stellar absorption lines are most abundant.

    • Yuk Shan Cheng
    • , Kamalesh Dadi
    •  & Derryck T. Reid
  • Article
    | Open Access

    Models predict that giant planets should easily form around solar-type stars, but most radial velocity surveys found a rather low number of them. Here, the authors show that Jupiter-like planets may be more common than previously found, at least in low density environments.

    • Raffaele Gratton
    • , Dino Mesa
    •  & Elisabetta Rigliaco
  • Article
    | Open Access

    Low stellar ultraviolet (UV) radiation leads to low ozone abundances, therefore, less planetary UV protection. Here, the authors show that planets in the habitable zones of metal-poor stars, despite their higher UV radiation than metal-rich stars, are the best targets for search for life.

    • Anna V. Shapiro
    • , Christoph Brühl
    •  & Jos Lelieveld
  • Comment
    | Open Access

    A long-standing issue in astrobiology is whether planets orbiting the most abundant type of stars, M-dwarfs, can support liquid water and eventually life. A new study shows that subglacial melting may provide an answer, significantly extending the habitability region, in particular around M-dwarf stars, which are also the most promising for biosignature detection with the present and near-future technology.

    • Amri Wandel
  • Article
    | Open Access

    Liquid water is key for life as we know it. Here, the authors show even with a modest geothermal heat flow, subglacial oceans of liquid water can form at the base of and within the ice sheets on exo-Earths, which may provide habitable conditions for an extended period.

    • Lujendra Ojha
    • , Bryce Troncone
    •  & George McDonald
  • Comment
    | Open Access

    Habitability of exoplanet’s deepest oceans could be limited by the presence of high-pressure ices at their base. New work demonstrates that efficient chemical transport within deep planetary ice mantles is possible through significant salt incorporation within the high-pressure ice.

    • Baptiste Journaux
  • Article
    | Open Access

    This study finds that the Moon accreted from an initially liquid-rich silicate disk and that rocky and icy exoplanets whose radii are smaller than 1.6 Earth radii are ideal candidates for hosting large exomoons.

    • Miki Nakajima
    • , Hidenori Genda
    •  & Shigeru Ida
  • Article
    | Open Access

    Imaging of low-mass exoplanets can be achieved once the thermal background in the mid-infrared (MIR) wavelengths can be mitigated. Here, the authors present a ground-based MIR observing approach enabling imaging low-mass temperate exoplanets around nearby stars.

    • K. Wagner
    • , A. Boehle
    •  & T. de Zeeuw
  • Article
    | Open Access

    In the habitable zone concept, a planet’s carbon dioxide-water greenhouse maintains surface liquid water. Here, the authors estimate how many Earthlike exoplanets are needed to detect a relationship between stellar flux and the atmospheric carbon dioxide predicted by carbon cycle modeling.

    • Owen R. Lehmer
    • , David C. Catling
    •  & Joshua Krissansen-Totton
  • Article
    | Open Access

    Establishing diagnostics for terrestrial exoplanets are crucial for their characterization. Here, the authors show brightness modulations of Venus are caused by planetary-scale waves superimposed on the super-rotating winds can be used to detect existence of an atmosphere if detected at an exoplanet.

    • Y. J. Lee
    • , A. García Muñoz
    •  & S. Watanabe
  • Article
    | Open Access

    In this study, the authors investigate in the influence of atmospheric dust on the habitability of exoplanets. They find that atmospheric dust may postpone planetary water loss; for tidally locked planets in particular, dust can significantly widen the habitable zone by cooling the day side and warming the night side.

    • Ian A. Boutle
    • , Manoj Joshi
    •  & Krisztian Kohary
  • Article
    | Open Access

    With the discovery of large rocky exoplanets called Super-Earths, questions have arisen regarding the properties of their interiors and their ability to produce a magnetic field. Here, the authors show that under high pressure, molten silicates are semi-metallic and that magma oceans would host a dynamo process.

    • François Soubiran
    •  & Burkhard Militzer
  • Article
    | Open Access

    Observations of Jupiter’s magnetosphere provide opportunities to understand how magnetic fields interact with particles. Here, the authors report that the chorus wave power is increased in the vicinity of Europa and Ganymede. The generated waves are able to accelerate particles to very high energy.

    • Y. Y. Shprits
    • , J. D. Menietti
    •  & D. A. Gurnett
  • Article
    | Open Access

    Large variations in insolation experienced by circumbinary planets raise the question of the habitability of such planets. Here, the authors show that while the changing insolation does not radically affect habitability, it does impact on the planet’s climate and on the interpretation of future observations.

    • Max Popp
    •  & Siegfried Eggl
  • Article
    | Open Access

    Theory predicts a deficit of super-Earth sized planets, which orbit close to their host star. Here, Lundkvist et al. use data from the NASA Kepler mission to show that this deficit is also seen in observations, thereby providing new insight into exoplanetary systems.

    • M. S. Lundkvist
    • , H. Kjeldsen
    •  & T. R. White
  • Article
    | Open Access

    The atmosphere of a transiting planet shields the stellar radiation enabling size and density stratification to be estimated. Here, the authors study Venus and show that the measured radius depends on the wavelength used, which has implications for Venus’s ionosphere and may help in planning future missions.

    • Fabio Reale
    • , Angelo F. Gambino
    •  & Giuseppe Piccioni