Electron transfer

Electron transfer is a process by which an electron moves from one atom or molecule to another. It is a key concept in redox chemistry – the chemistry of reactions where one reaction partner loses electrons (oxidation) while the other gains electrons (reduction).

Latest Research and Reviews

News and Comment

  • Research Highlights |

    Certain frustrated Lewis pairs can undergo single electron transfer to give frustrated radical pairs. Such radical pairs have been implicated as important species in the activation of small molecules such as dihydrogen.

    • David Schilter
  • News and Views |

    How the first metabolic network was organized to power a cell remains an enigma. Now, simple iron–sulfur peptides have been used to generate a pH-gradient across a protocell membrane by catalysing hydrogen peroxide reduction. This indicates that short peptides could have fulfilled the role of redox active metalloproteins in early life.

    • Saidul Islam
    •  & Matthew W. Powner
    Nature Catalysis 1, 569-570
  • News and Views |

    Helium, the 'most noble' of the noble gases, had only been coaxed into forming molecular ions or van der Waals compounds. It has now been seen in a stable solid compound, Na2He, under high pressure.

    • Maosheng Miao
    Nature Chemistry 9, 409-410
  • News and Views |

    Charge transfer through DNA has been well studied over recent decades from both a biological and electronics perspective. It has now been shown that charge transfer can be accelerated one hundredfold by using highly energetic 'hot holes', revealing a new mechanism that could help to create useful electronic biomaterials.

    • D. N. Beratan
    •  & D. H. Waldeck
    Nature Chemistry 8, 992-993
  • News and Views |

    Electron transfer is ubiquitous across both life and modern technologies, and thus being able to control it is an attractive goal. Now, targeted infrared excitation has been used to modulate the efficiency of electron transfer in a series of donor–bridge–acceptor molecules.

    • Igor V. Rubtsov
    Nature Chemistry 7, 683-684