CRISPR-Cas9 genome editing

CRISPR-Cas9 genome editing exploits the CRISPR-Cas system to modify a genome in a targeted manner. Guided by RNA, the Cas9 endonuclease breaks DNA at a target sequence. Imprecise repair of the double strand break can result in insertion or deletion mutations, while repair pathways can be engineered to introduce specific point mutations or insertions.

Featured

Latest Research and Reviews

  • Research |

    Genome-edited human pluripotent stem cells and genome-edited mouse models reveal that combinatorial genetic interactions contribute to the complex genetic heritability of human cardiomyopathy.

    • Dekker C. Deacon
    • , Cassandra L. Happe
    • , Chao Chen
    • , Neil Tedeschi
    • , Ana Maria Manso
    • , Ting Li
    • , Nancy D. Dalton
    • , Qian Peng
    • , Elie N. Farah
    • , Yusu Gu
    • , Kevin P. Tenerelli
    • , Vivien D. Tran
    • , Ju Chen
    • , Kirk L. Peterson
    • , Nicholas J. Schork
    • , Eric D. Adler
    • , Adam J. Engler
    • , Robert S. Ross
    •  & Neil C. Chi
  • Research | | open

    The genomic locations that can be targeted for editing by CRISPR are limited by the presence of the nuclease-specific PAM sequence. Here, the authors show PAM recognition can be expanded by replacing the key region in the PAM interaction domain of SaCas9 with the corresponding region of SaCas9 orthologs.

    • Dacheng Ma
    • , Zhimeng Xu
    • , Zhaoyu Zhang
    • , Xi Chen
    • , Xiangzhi Zeng
    • , Yiyang Zhang
    • , Tingyue Deng
    • , Mengfei Ren
    • , Zheng Sun
    • , Rui Jiang
    •  & Zhen Xie
  • Research | | open

    Jaindra Tirpathi et al. report a strategy for inactivating endogenous banana streak virus sequences in the plantain B genome using CRISPR/Cas9. They show that three-quarters of edited plants had no viral symptoms under stress conditions, providing an improved B genome germplasm for plantain and banana breeding.

    • Jaindra N. Tripathi
    • , Valentine O. Ntui
    • , Mily Ron
    • , Samwel K. Muiruri
    • , Anne Britt
    •  & Leena Tripathi
  • Research | | open

    It is difficult to identify cancer driver genes in cancers, for instance BRCA1 mutated breast cancer, that are characterised by large scale genomic alterations. Here, the authors develop genetically engineered mouse models of BRCA1-deficient breast cancer that allow highthroughput in vivo perturbation of candidate driver genes, validating drivers Myc, Met, Pten and Rb1, and identifying MCL1 as a collaborating driver whose targeting can impact efficacy of PARP inhibition.

    • Stefano Annunziato
    • , Julian R. de Ruiter
    • , Linda Henneman
    • , Chiara S. Brambillasca
    • , Catrin Lutz
    • , François Vaillant
    • , Federica Ferrante
    • , Anne Paulien Drenth
    • , Eline van der Burg
    • , Bjørn Siteur
    • , Bas van Gerwen
    • , Roebi de Bruijn
    • , Martine H. van Miltenburg
    • , Ivo J. Huijbers
    • , Marieke van de Ven
    • , Jane E. Visvader
    • , Geoffrey J. Lindeman
    • , Lodewyk F. A. Wessels
    •  & Jos Jonkers

News and Comment