Ca2+ imaging

Definition

Calcium (Ca2+) imaging is a method for visualizing the local concentration of calcium in cells or tissues. It relies on fluorescent indicators, including small chemical indicators and genetically encoded calcium indicators (GECIs), that change spectral properties upon binding calcium.

Latest Research and Reviews

  • Research |

    FHIRM-TPM is a miniature two-photon microscope capable of imaging fluorescently labeled neurons in the brains of freely behaving mice. It allows for imaging of spines or recording of neural activity with a frame rate up to 40 Hz.

    • Weijian Zong
    • , Runlong Wu
    • , Mingli Li
    • , Yanhui Hu
    • , Yijun Li
    • , Jinghang Li
    • , Hao Rong
    • , Haitao Wu
    • , Yangyang Xu
    • , Yang Lu
    • , Hongbo Jia
    • , Ming Fan
    • , Zhuan Zhou
    • , Yunfeng Zhang
    • , Aimin Wang
    • , Liangyi Chen
    •  & Heping Cheng
  • Research |

    vTwINS enables high-speed volumetric calcium imaging via a V-shaped point spread function and a dedicated data-processing algorithm. Song et al. apply this strategy to image population activity in the mouse visual cortex and hippocampus.

    • Alexander Song
    • , Adam S Charles
    • , Sue Ann Koay
    • , Jeff L Gauthier
    • , Stephan Y Thiberge
    • , Jonathan W Pillow
    •  & David W Tank
    Nature Methods 14, 420–426
  • Research |

    Two-photon scanning microscopy is inherently slow and thus limits volumetric calcium imaging. Prevedel et al. achieve increased volumetric imaging speed by tailoring the excitation volume via light sculpting.

    • Robert Prevedel
    • , Aart J Verhoef
    • , Alejandro J Pernía-Andrade
    • , Siegfried Weisenburger
    • , Ben S Huang
    • , Tobias Nöbauer
    • , Alma Fernández
    • , Jeroen E Delcour
    • , Peyman Golshani
    • , Andrius Baltuska
    •  & Alipasha Vaziri
    Nature Methods 13, 1021–1028
  • Research |

    Random-access line scanning enables neural activity to be monitored at high speed in neurons and dendrites that are sparsely distributed in three dimensions. The approach is demonstrated in behaving mice.

    • K M Naga Srinivas Nadella
    • , Hana Roš
    • , Chiara Baragli
    • , Victoria A Griffiths
    • , George Konstantinou
    • , Theo Koimtzis
    • , Geoffrey J Evans
    • , Paul A Kirkby
    •  & R Angus Silver
  • Reviews |

    Ji et al. review emerging microscopy technologies that enable large-volume imaging of neural circuits. Focusing on two-photon fluorescence microscopy, they explored critical factors that limit imaging speed and restrict image volume, and also discuss three-dimensional imaging methods and their applications in rapid volume imaging of neural activity.

    • Na Ji
    • , Jeremy Freeman
    •  & Spencer L Smith
    Nature Neuroscience 19, 1154–1164
  • Research | | open

    • Natalia V. Barykina
    • , Oksana M. Subach
    • , Danila A. Doronin
    • , Vladimir P. Sotskov
    • , Marina A. Roshchina
    • , Tatiana A. Kunitsyna
    • , Aleksey Y. Malyshev
    • , Ivan V. Smirnov
    • , Asya M. Azieva
    • , Ilya S. Sokolov
    • , Kiryl D. Piatkevich
    • , Mikhail S. Burtsev
    • , Anna M. Varizhuk
    • , Galina E. Pozmogova
    • , Konstantin V. Anokhin
    • , Fedor V. Subach
    •  & Grigori N. Enikolopov

News and Comment