Archaeal evolution

Archaeal evolution is the process by which the domain of organisms called archaea has developed over multiple generations. This process can be studied by phylogenetics and such studies show that Archaea have a distinct evolutionary history from bacteria and eukaryotes.

Latest Research and Reviews

  • Research
    | Open Access

    Isolation and characterization of an archaeon that is most closely related to eukaryotes reveals insights into how eukaryotes may have evolved from prokaryotes.

    • Hiroyuki Imachi
    • , Masaru K. Nobu
    • , Nozomi Nakahara
    • , Yuki Morono
    • , Miyuki Ogawara
    • , Yoshihiro Takaki
    • , Yoshinori Takano
    • , Katsuyuki Uematsu
    • , Tetsuro Ikuta
    • , Motoo Ito
    • , Yohei Matsui
    • , Masayuki Miyazaki
    • , Kazuyoshi Murata
    • , Yumi Saito
    • , Sanae Sakai
    • , Chihong Song
    • , Eiji Tasumi
    • , Yuko Yamanaka
    • , Takashi Yamaguchi
    • , Yoichi Kamagata
    • , Hideyuki Tamaki
    •  & Ken Takai
    Nature 577, 519-525
  • Research
    | Open Access

    The authors build a reference phylogeny of 10,575 evenly-sampled bacterial and archaeal genomes, based on 381 markers. The results indicate a remarkably closer evolutionary proximity between Archaea and Bacteria than previous estimates that used fewer “core” genes, such as the ribosomal proteins.

    • Qiyun Zhu
    • , Uyen Mai
    • , Wayne Pfeiffer
    • , Stefan Janssen
    • , Francesco Asnicar
    • , Jon G. Sanders
    • , Pedro Belda-Ferre
    • , Gabriel A. Al-Ghalith
    • , Evguenia Kopylova
    • , Daniel McDonald
    • , Tomasz Kosciolek
    • , John B. Yin
    • , Shi Huang
    • , Nimaichand Salam
    • , Jian-Yu Jiao
    • , Zijun Wu
    • , Zhenjiang Z. Xu
    • , Kalen Cantrell
    • , Yimeng Yang
    • , Erfan Sayyari
    • , Maryam Rabiee
    • , James T. Morton
    • , Sheila Podell
    • , Dan Knights
    • , Wen-Jun Li
    • , Curtis Huttenhower
    • , Nicola Segata
    • , Larry Smarr
    • , Siavash Mirarab
    •  & Rob Knight
  • Research |

    An interdisciplinary investigation of the Dallol polyextreme environment reveals two physicochemical barriers to life in the presence of surface liquid water: high chaotropicity–low water activity and hyperacidity–salt combinations.

    • Jodie Belilla
    • , David Moreira
    • , Ludwig Jardillier
    • , Guillaume Reboul
    • , Karim Benzerara
    • , José M. López-García
    • , Paola Bertolino
    • , Ana I. López-Archilla
    •  & Purificación López-García
  • Research |

    Comparative genome and phylogenetic analyses of Asgard archaea reveal their metabolic potential and lead to the proposal of a revised model for eukaryogenesis, termed the reverse flow model.

    • Anja Spang
    • , Courtney W. Stairs
    • , Nina Dombrowski
    • , Laura Eme
    • , Jonathan Lombard
    • , Eva F. Caceres
    • , Chris Greening
    • , Brett J. Baker
    •  & Thijs J. G. Ettema
    Nature Microbiology 4, 1138-1148
  • Research |

    A comparative analysis of Asgard archaea genomes elucidates their metabolic potential and leads to the proposal of a revised ‘aerobic protoeukaryotes’ model for the origin of the eukaryotic cell.

    • Paul-Adrian Bulzu
    • , Adrian-Ştefan Andrei
    • , Michaela M. Salcher
    • , Maliheh Mehrshad
    • , Keiichi Inoue
    • , Hideki Kandori
    • , Oded Beja
    • , Rohit Ghai
    •  & Horia L. Banciu
    Nature Microbiology 4, 1129-1137

News and Comment

  • News |

    This month’s Genome Watch highlights the unique evolutionary history, metabolic functions, and newly identified viruses and associated mobile genetic elements for the highly abundant and ubiquitous ammonia-oxidizing archaea.

    • Emiley A. Eloe-Fadrosh
  • News and Views |

    Eukaryotes evolved from a symbiosis involving Alphaproteobacteria and archaea phylogenetically nested within the Asgard clade. Two recent studies explore the metabolic capabilities of Asgard lineages, supporting refined symbiotic metabolic interactions that might have operated at the dawn of eukaryogenesis.

    • Purificación López-García
    •  & David Moreira
    Nature Microbiology 4, 1068-1070
  • News and Views |

    Three recent metagenomic studies analyse methanogenesis-related genes in previously uncharacterized, sediment-inhabiting archaeal lineages. They elucidate the metabolic capacity encoded in the genomes of these lineages, yet how these organisms harness energy is still a mystery.

    • Joana C. Xavier
    •  & William F. Martin
    Nature Microbiology 4, 547-549