Archaeal biology

Archaeal biology is a scientific discipline that concerns the biology of archaea, a domain of organisms consisting of single, nucleus-free cells, distinct from bacteria and eukaryotes.

Latest Research and Reviews

  • Research | | open

    Natural gas reservoirs in the oceanic subsurface sustain complex communities of anaerobic microbes. Here, Seitz et al. describe a previously unknown archaeal phylum, Helarchaeota, belonging to the Asgard superphylum and with the potential for oxidation of hydrothermally generated short-chain hydrocarbons.

    • Kiley W. Seitz
    • , Nina Dombrowski
    • , Laura Eme
    • , Anja Spang
    • , Jonathan Lombard
    • , Jessica R. Sieber
    • , Andreas P. Teske
    • , Thijs J. G. Ettema
    •  & Brett J. Baker
  • Research | | open

    Cofactor F420 plays crucial roles in bacterial and archaeal metabolism, but its biosynthetic pathway is not fully understood. Here, the authors present the structure of one of the enzymes and provide experimental evidence for a substantial revision of the pathway, including the identification of a new intermediate.

    • Ghader Bashiri
    • , James Antoney
    • , Ehab N. M. Jirgis
    • , Mihir V. Shah
    • , Blair Ney
    • , Janine Copp
    • , Stephanie M. Stuteley
    • , Sreevalsan Sreebhavan
    • , Brian Palmer
    • , Martin Middleditch
    • , Nobuhiko Tokuriki
    • , Chris Greening
    • , Colin Scott
    • , Edward N. Baker
    •  & Colin J. Jackson
  • Research |

    Comparative genome and phylogenetic analyses of Asgard archaea reveal their metabolic potential and lead to the proposal of a revised model for eukaryogenesis, termed the reverse flow model.

    • Anja Spang
    • , Courtney W. Stairs
    • , Nina Dombrowski
    • , Laura Eme
    • , Jonathan Lombard
    • , Eva F. Caceres
    • , Chris Greening
    • , Brett J. Baker
    •  & Thijs J. G. Ettema
  • Research |

    A metagenome-based survey of archaeal genomes encoding methyl-coenzyme M reductase (MCR)—a key enzyme for methanogenesis and anaerobic methane oxidation—reveals that MCR-based metabolism is common and diverse in archaea, and may be coupled to dissimilatory sulfate reduction in single organisms.

    • Yinzhao Wang
    • , Gunter Wegener
    • , Jialin Hou
    • , Fengping Wang
    •  & Xiang Xiao
    Nature Microbiology 4, 595-602
  • Research |

    A search for methyl-coenzyme M reductase complex (MCR) and MCR-like homologues—which govern methane and short-chain alkane metabolism—across publicly available metagenomes reveals that these metabolic pathways are widespread and diverse in archaea, and may in some organisms be linked to alkane and/or fatty acid oxidation.

    • Guillaume Borrel
    • , Panagiotis S. Adam
    • , Luke J. McKay
    • , Lin-Xing Chen
    • , Isabel Natalia Sierra-García
    • , Christian M. K. Sieber
    • , Quentin Letourneur
    • , Amine Ghozlane
    • , Gary L. Andersen
    • , Wen-Jun Li
    • , Steven J. Hallam
    • , Gerard Muyzer
    • , Valéria Maia de Oliveira
    • , William P. Inskeep
    • , Jillian F. Banfield
    •  & Simonetta Gribaldo
    Nature Microbiology 4, 603-613
  • Research | | open

    Chemosynthetic microbial communities in hydrothermal environments receiving meteoric and geothermal fluids are understudied. Here, Colman et al. use metagenomics to study one such community from a hot spring at Yellowstone National Park, revealing exceptional biodiversity and unique functional potential.

    • Daniel R. Colman
    • , Melody R. Lindsay
    •  & Eric S. Boyd

News and Comment