Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Counting stem cells: methodological constraints

Abstract

The number of stem cells contributing to hematopoiesis has been a matter of debate. Many studies use retroviral tagging of stem cells to measure clonal contribution. Here we argue that methodological factors can impact such clonal analyses. Whereas early studies had low resolution, leading to underestimation, recent methods may result in an overestimation of stem-cell counts. We discuss how restriction enzyme choice, PCR bias, high-throughput sequencing depth and tagging method could affect the conclusions of clonal studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models of clonal kinetics in hematopoiesis.
Figure 2: Reports of number of viral integration sites or hematopoietic clonality in multiple studies.
Figure 3: Strategies for identifying retroviral tags for clonal analysis.
Figure 4: Predicted PCR amplification efficiency of genomic fragments digested with different enzymes.
Figure 5: Combinatorial strategy to select optimal combination of restriction enzymes.
Figure 6: Clonal analysis in barcoded cells.
Figure 7: Clonal kinetics in mice transplanted with barcoded cells.

Similar content being viewed by others

References

  1. Anderson, K. et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469, 356–361 (2011).

    Article  CAS  Google Scholar 

  2. Notta, F. et al. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature 469, 362–367 (2011).

    Article  CAS  Google Scholar 

  3. Lemischka, I.R., Raulet, D.H. & Mulligan, R.C. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45, 917–927 (1986).

    Article  CAS  Google Scholar 

  4. Snodgrass, R. & Keller, G. Clonal fluctuation within the haematopoietic system of mice reconstituted with retrovirus-infected stem cells. EMBO J. 6, 3955–3960 (1987).

    Article  CAS  Google Scholar 

  5. Capel, B., Hawley, R., Covarrubias, L., Hawley, T. & Mintz, B. Clonal contributions of small numbers of retrovirally marked hematopoietic stem cells engrafted in unirradiated neonatal W/Wv mice. Proc. Natl. Acad. Sci. USA 86, 4564–4568 (1989).

    Article  CAS  Google Scholar 

  6. Abkowitz, J.L. et al. Evidence for the maintenance of hematopoiesis in a large animal by the sequential activation of stem-cell clones. Proc. Natl. Acad. Sci. USA 87, 9062–9066 (1990).

    Article  CAS  Google Scholar 

  7. Harrison, D.E., Astle, C.M. & Lerner, C. Number and continuous proliferative pattern of transplanted primitive immunohematopoietic stem cells. Proc. Natl. Acad. Sci. USA 85, 822–826 (1988).

    Article  CAS  Google Scholar 

  8. Harrison, D.E., Astle, C.M. & Stone, M. Numbers and functions of transplantable primitive immunohematopoietic stem cells. Effects of age. J. Immunol. 142, 3833–3840 (1989).

    CAS  PubMed  Google Scholar 

  9. Jordan, C.T. & Lemischka, I.R. Clonal and systemic analysis of long-term hematopoiesis in the mouse. Genes Dev. 4, 220–232 (1990).

    Article  CAS  Google Scholar 

  10. Takizawa, H., Regoes, R.R., Boddupalli, C.S., Bonhoeffer, S. & Manz, M.G. Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. J. Exp. Med. 208, 273–284 (2011).

    Article  CAS  Google Scholar 

  11. Hai, M. et al. Potential genotoxicity from integration sites in CLAD dogs treated successfully with gammaretroviral vector-mediated gene therapy. Gene Ther. 15, 1067–1071 (2008).

    Article  CAS  Google Scholar 

  12. Cartier, N. et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326, 818–823 (2009).

    Article  CAS  Google Scholar 

  13. Wang, G.P. et al. Dynamics of gene-modified progenitor cells analyzed by tracking retroviral integration sites in a human SCID-X1 gene therapy trial. Blood 115, 4356–4366 (2010).

    Article  CAS  Google Scholar 

  14. Maetzig, T. et al. Polyclonal fluctuation of lentiviral vector-transduced and expanded murine hematopoietic stem cells. Blood 117, 3053–3064 (2011).

    Article  CAS  Google Scholar 

  15. Cavazzana-Calvo, M. et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature 467, 318–322 (2010).

    Article  CAS  Google Scholar 

  16. Gabriel, R. et al. Comprehensive genomic access to vector integration in clinical gene therapy. Nat. Med. 15, 1431–1436 (2009).

    Article  CAS  Google Scholar 

  17. Gentner, B., Laufs, S., Nagy, K.Z., Zeller, W.J. & Fruehauf, S. Rapid detection of retroviral vector integration sites in colony-forming human peripheral blood progenitor cells using PCR with arbitrary primers. Gene Ther. 10, 789–794 (2003).

    Article  CAS  Google Scholar 

  18. Gerrits, A. et al. Cellular barcoding tool for clonal analysis in the hematopoietic system. Blood 115, 2610–2618 (2010).

    Article  CAS  Google Scholar 

  19. Mantovani, J., Holic, N., Martinez, K., Danos, O. & Perea, J. A high throughput method for genome-wide analysis of retroviral integration. Nucleic Acids Res. 34, e134 (2006).

    Article  Google Scholar 

  20. Harkey, M.A. et al. Multiarm high-throughput integration site detection: limitations of LAM-PCR technology and optimization for clonal analysis. Stem Cells Dev. 16, 381–392 (2007).

    Article  CAS  Google Scholar 

  21. Wang, G.P. et al. DNA bar coding and pyrosequencing to analyze adverse events in therapeutic gene transfer. Nucleic Acids Res. 36, e49 (2008).

    Article  Google Scholar 

  22. Kim, S. et al. High-throughput, sensitive quantification of repopulating hematopoietic stem cell clones. J. Virol. 84, 11771–11780 (2010).

    Article  CAS  Google Scholar 

  23. Mitsuhashi, J. et al. Retroviral integration site analysis and the fate of transduced clones in an MDR1 gene therapy protocol targeting metastatic breast cancer. Hum. Gene Ther. 18, 895–906 (2007).

    Article  CAS  Google Scholar 

  24. Hayakawa, J. et al. Long-term vector integration site analysis following retroviral mediated gene transfer to hematopoietic stem cells for the treatment of HIV infection. PLoS ONE 4, e4211 (2009).

    Article  Google Scholar 

  25. Kim, H.J. et al. Many multipotential gene-marked progenitor or stem cell clones contribute to hematopoiesis in nonhuman primates. Blood 96, 1–8 (2000).

    CAS  PubMed  Google Scholar 

  26. Bauer, T.R. Jr. et al. Correction of the disease phenotype in canine leukocyte adhesion deficiency using ex vivo hematopoietic stem cell gene therapy. Blood 108, 3313–3320 (2006).

    Article  CAS  Google Scholar 

  27. Schmidt, M. et al. Detection and direct genomic sequencing of multiple rare unknown flanking DNA in highly complex samples. Hum. Gene Ther. 12, 743–749 (2001).

    Article  CAS  Google Scholar 

  28. Schwarzwaelder, K. et al. Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo. J. Clin. Invest. 117, 2241–2249 (2007).

    Article  CAS  Google Scholar 

  29. Deichmann, A. et al. Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy. J. Clin. Invest. 117, 2225–2232 (2007).

    Article  CAS  Google Scholar 

  30. Kustikova, O. et al. Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science 308, 1171–1174 (2005).

    Article  CAS  Google Scholar 

  31. Cuticchia, A.J., Ivarie, R. & Arnold, J. The application of Markov chain analysis to oligonucleotide frequency prediction and physical mapping of Drosophila melanogaster. Nucleic Acids Res. 20, 3651–3657 (1992).

    Article  CAS  Google Scholar 

  32. Karlin, S. & Mrazek, J. Compositional differences within and between eukaryotic genomes. Proc. Natl. Acad. Sci. USA 94, 10227–10232 (1997).

    Article  CAS  Google Scholar 

  33. Chor, B., Horn, D., Goldman, N., Levy, Y. & Massingham, T. Genomic DNA k-mer spectra: models and modalities. Genome Biol. 10, R108 (2009).

    Article  Google Scholar 

  34. Biasco, L. et al. Integration profile of retroviral vector in gene therapy treated patients is cell-specific according to gene expression and chromatin conformation of target cell. EMBO Mol. Med. 3, 89–101 (2011).

    Article  CAS  Google Scholar 

  35. Ciuffi, A. et al. Methods for integration site distribution analyses in animal cell genomes. Methods 47, 261–268 (2009).

    Article  CAS  Google Scholar 

  36. Lu, R., Neff, N.F., Quake, S.R. & Weissman, I.L. Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat. Biotechnol. 29, 928–933 (2011).

    Article  CAS  Google Scholar 

  37. Golden, J.A., Fields-Berry, S.C. & Cepko, C.L. Construction and characterization of a highly complex retroviral library for lineage analysis. Proc. Natl. Acad. Sci. USA 92, 5704–5708 (1995).

    Article  CAS  Google Scholar 

  38. Cepko, C.L. et al. Lineage analysis using retroviral vectors. Methods 14, 393–406 (1998).

    Article  CAS  Google Scholar 

  39. Schepers, K. et al. Dissecting T cell lineage relationships by cellular barcoding. J. Exp. Med. 205, 2309–2318 (2008).

    Article  CAS  Google Scholar 

  40. Biffi, A. et al. Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection. Blood 117, 5332–5339 (2011).

    Article  CAS  Google Scholar 

  41. Trumpp, A., Essers, M. & Wilson, A. Awakening dormant haematopoietic stem cells. Nat. Rev. Immunol. 10, 201–209 (2010).

    Article  CAS  Google Scholar 

  42. Schroeder, T. Hematopoietic stem cell heterogeneity: subtypes, not unpredictable behavior. Cell Stem Cell 6, 203–207 (2010).

    Article  CAS  Google Scholar 

  43. Cavazzana-Calvo, M. et al. Is normal hematopoiesis maintained solely by long-term multipotent stem cells? Blood 117, 4420–4424 (2011).

    Article  Google Scholar 

  44. Hock, H. Some hematopoietic stem cells are more equal than others. J. Exp. Med. 207, 1127–1130 (2010).

    Article  CAS  Google Scholar 

  45. Morita, Y., Ema, H. & Nakauchi, H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J. Exp. Med. 207, 1173–1182 (2010).

    Article  CAS  Google Scholar 

  46. Abkowitz, J.L., Golinelli, D., Harrison, D.E. & Guttorp, P. In vivo kinetics of murine hemopoietic stem cells. Blood 96, 3399–3405 (2000).

    CAS  PubMed  Google Scholar 

  47. Szilvassy, S.J., Humphries, R.K., Lansdorp, P.M., Eaves, A.C. & Eaves, C.J. Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc. Natl. Acad. Sci. USA 87, 8736–8740 (1990).

    Article  CAS  Google Scholar 

  48. Szilvassy, S.J., Lansdorp, P.M., Humphries, R.K., Eaves, A.C. & Eaves, C.J. Isolation in a single step of a highly enriched murine hematopoietic stem cell population with competitive long-term repopulating ability. Blood 74, 930–939 (1989).

    CAS  PubMed  Google Scholar 

  49. Wang, J.C., Doedens, M. & Dick, J.E. Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay. Blood 89, 3919–3924 (1997).

    CAS  PubMed  Google Scholar 

  50. van der Loo, J.C. et al. Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse as a model system to study the engraftment and mobilization of human peripheral blood stem cells. Blood 92, 2556–2570 (1998).

    CAS  PubMed  Google Scholar 

  51. Aiuti, A. et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N. Engl. J. Med. 360, 447–458 (2009).

    Article  CAS  Google Scholar 

  52. Kay, H.E. How many cell-generations? Lancet 2, 418–419 (1965).

    Article  CAS  Google Scholar 

  53. Mikkers, H. et al. High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat. Genet. 32, 153–159 (2002).

    Article  CAS  Google Scholar 

  54. Silver, J. & Keerikatte, V. Novel use of polymerase chain reaction to amplify cellular DNA adjacent to an integrated provirus. J. Virol. 63, 1924–1928 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lenvik, T., Lund, T.C. & Verfaillie, C.M. Blockerette-ligated capture T7-amplified RT-PCR, a new method for determining flanking sequences. Mol. Ther. 6, 113–118 (2002).

    Article  CAS  Google Scholar 

  56. Hengen, P.N. Vectorette, splinkerette and boomerang DNA amplification. Trends Biochem. Sci. 20, 372–373 (1995).

    Article  CAS  Google Scholar 

  57. Dick, J.E., Magli, M.C., Huszar, D., Phillips, R.A. & Bernstein, A. Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice. Cell 42, 71–79 (1985).

    Article  CAS  Google Scholar 

  58. Kohn, D.B. et al. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat. Med. 1, 1017–1023 (1995).

    Article  CAS  Google Scholar 

  59. Schmidt, M. et al. Polyclonal long-term repopulating stem cell clones in a primate model. Blood 100, 2737–2743 (2002).

    Article  CAS  Google Scholar 

  60. Schmidt, M. et al. Clonality analysis after retroviral-mediated gene transfer to CD34+ cells from the cord blood of ADA-deficient SCID neonates. Nat. Med. 9, 463–468 (2003).

    Article  CAS  Google Scholar 

  61. Kiem, H.P. et al. Long-term clinical and molecular follow-up of large animals receiving retrovirally transduced stem and progenitor cells: no progression to clonal hematopoiesis or leukemia. Mol. Ther. 9, 389–395 (2004).

    Article  CAS  Google Scholar 

  62. Schmidt, M. et al. Clonal evidence for the transduction of CD34+ cells with lymphomyeloid differentiation potential and self-renewal capacity in the SCID-X1 gene therapy trial. Blood 105, 2699–2706 (2005).

    Article  CAS  Google Scholar 

  63. Kim, Y.J. et al. Sustained high-level polyclonal hematopoietic marking and transgene expression 4 years after autologous transplantation of rhesus macaques with SIV lentiviral vector-transduced CD34+ cells. Blood 113, 5434–5443 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Dykstra for critical reading of the manuscript, and M. Ritsema, H. Moes, G. Mesander and R.-J. van der Lei for technical assistance. This study was supported by the Netherlands Organization for Scientific Research (VICI grant to G.d.H. and TopTalent grant to E.V.), and the Netherlands Genomics Initiative (Horizon Grant 050-71-055 to G.d.H. and the EU FP7 grant EuroSystem contract 200720).

Author information

Authors and Affiliations

Authors

Contributions

L.V.B. conceptualized the paper; L.V.B., M.B. and E.V. performed experiments; L.V.B., E.V. and E.Z. analyzed the data; L.V.B., E.V. and G.d.H. wrote the paper; and G.d.H. provided funding.

Corresponding authors

Correspondence to Leonid V Bystrykh or Gerald de Haan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1,3 (PDF 326 kb)

Supplementary Table 2

Excel script for combinatorial restriction enzyme selection. (XLSX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bystrykh, L., Verovskaya, E., Zwart, E. et al. Counting stem cells: methodological constraints. Nat Methods 9, 567–574 (2012). https://doi.org/10.1038/nmeth.2043

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2043

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing