This page has been archived and is no longer updated

 

principle of independent assortment

The Principle of Independent Assortment describes how different genes independently separate from one another when reproductive cells develop. Independent assortment of genes and their corresponding traits was first observed by Gregor Mendel in 1865 during his studies of genetics in pea plants. Mendel was performing dihybrid crosses, which are crosses between organisms that differ with regard to two traits. He discovered that the combinations of traits in the offspring of his crosses did not always match the combinations of traits in the parental organisms. From his data, he formulated the Principle of Independent Assortment.

We now know that this independent assortment of genes occurs during meiosis in eukaryotes. Meiosis is a type of cell division that reduces the number of chromosomes in a parent cell by half to produce four reproductive cells called gametes. In humans, diploid cells contain 46 chromosomes, with 23 chromosomes inherited from the mother and a second similar set of 23 chromosomes inherited from the father. Pairs of similar chromosomes are called homologous chromosomes. During meiosis, the pairs of homologous chromosome are divided in half to form haploid cells, and this separation, or assortment, of homologous chromosomes is random. This means that all of the maternal chromosomes will not be separated into one cell, while the all paternal chromosomes are separated into another. Instead, after meiosis occurs, each haploid cell contains a mixture of genes from the organism's mother and father.

Another feature of of independent assortment is recombination. Recombination occurs during meiosis and is a process that breaks and recombines pieces of DNA to produce new combinations of genes. Recombination scrambles pieces of maternal and paternal genes, which ensures that genes assort independently from one another. It is important to note that there is an exception to the law of independent assortment for genes that are located very close to one another on the same chromosome because of genetic linkage.

Explore
Related Concepts (15)

Connect
Connect Send a message

Scitable by Nature Education Nature Education Home Learn More About Faculty Page Students Page Feedback