
 Skip to main contentScientific American

Sign in

August 1, 2016
14 min read

“Coding for All”: Is It a Smart Goal for Schools?
Is coding for all a realistic goal—and is it one that American schools should be pursuing?

By Annie Murphy Paul
 Credit: Patric Sandri

August 2016 Issue

Computing

“Yes! We got here first!”
Allie and Lauren, two sixth graders at Loyola Elementary School in Los Altos, Calif., bound into Sheena Vaidyanathan's classroom a few minutes before the start of fifth period. The girls have a long-running competition with a couple of their classmates, William and Blake, over who can arrive the earliest at their computer programming class.
The two girls take their seats at the row of new Apple desktop computers and immediately start on the assignment Vaidyanathan has provided: finding and fixing errors in a computer program. It is the kind of activity, exacting but important, that occupies much of the time of professional programmers.

On supporting science journalism
If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

A bell sounds, and more students traipse in. Vaidyanathan, a petite woman with a warm and friendly manner, welcomes them with a smile.
“What are we doing today, Mrs. V?” asks one boy as he enters.
“Debugging a program,” she responds.
“Sweet!” he exclaims and darts over to a computer.
Proponents of universal coding instruction would like to see such scenes repeated all over the country. These champions include business leaders eager to employ the next generation of engineers and programmers, as well as government officials looking to ensure the U.S.'s competitiveness in the global economy. “Every student deserves a chance to learn this essential 21st century skill,” tweeted Microsoft co-founder Bill Gates earlier this year. Gates and others maintain that coding is a new literacy, as important as knowing how to read or to do math. In a 2008 essay, Marc Prensky, an author and speaker who coined the term “digital native,” wrote, “I believe the single skill that will, above all others, distinguish a literate person is programming literacy.”
These advocates have pointed to the high demand for computer programmers and the opportunities for advancement in the field—opportunities that, they say, will continue to expand in coming years.
Obama administration officials sketch an ambitious vision for computer science education in the U.S. in which our students keep pace with those in other nations—the U.K., they note, began requiring every student to learn to program in 2014—and persistent achievement gaps in our own country between white and affluent students on the one hand and minority and disadvantaged students on the other are closed with the help of coding for all.
Achieving this vision will not be easy, however. The extension of coding instruction to all U.S. students faces steep logistical challenges, from a shortage of qualified teachers to a lack of curricular materials. The U.S.'s radically decentralized school system makes it difficult to enact nationwide reform—just ask the architects of the Common Core State Standards—and most schools have yet to update their rules and standards for the information age (computer science courses often do not count toward graduation requirements in math or science, for example). Meanwhile students of different ethnic and socioeconomic backgrounds come to school with enormous disparities in their knowledge of computers; research suggests that schools often perpetuate these gaps by offering deep, substantive teaching to affluent white students and more superficial instruction to minority and low-income pupils.
Moreover, there is a growing recognition that programming skills can form only part of American students' preparation for living and working in the 21st century. Coding is the practice of computer science, but students also need the theory: an understanding of the underlying principles on which computers operate. Making such “computational thinking” universal will require a massive mobilization both outside school—in the form of extracurricular programs and resources—as well as inside school—by training teachers, revamping courses, integrating computer science into other academic subjects and changing graduation requirements.
Teaching to the Code
Vaidyanathan, who has a master's in computer science and has taught the subject for seven years, was an early proponent of the notion that every student should learn how to code. “And I mean every student—girls, boys, special education students, students who don't think they are math or science ‘people,’” Vaidyanathan says. But unlike some of her fellow advocates, she tempers her enthusiasm with realism. In an interview between classes, she points out some of the hurdles that stand in the way of achieving this appealing vision. “To begin with, there are not nearly enough computer science teachers to meet what would be an enormous demand,” she notes.
According to Advanced Placement (AP) publisher the College Board, only 4,310 U.S. high schools offered an AP exam in computer science in 2015—about 12 percent. Moreover, a 2014 analysis of the organization's data for 2013 found that in three states, there were no female students who took the test; in eight states, zero Hispanic test takers; and in 11 states, not one African-American test taker. (In many of these states, few or even no students took the test at all.) Further, a trained and ready corps of teachers simply is not there—and human teachers, Vaidyanathan insists, are what students need. “If students are learning material that is meaningful and challenging, they are going to get stuck at some point,” she says. “They're going to need a teacher who knows them, who can explain the problem in a way they understand, and who can draw on the student-teacher relationship as a source of motivation and support. A Khan Academy video can't do all that.”
Not only are there too few computer science teachers, there is also the absence of an agreed-on computer science curriculum. The CSTA has developed a set of standards for kindergarten through grade 12, but these are general in the extreme (students in grades six through nine should “begin to appreciate the ubiquity of computing and the ways in which computer science facilitates communication and collaboration”), meaning that teachers such as Vaidyanathan are on their own in deciding what and how to teach their students. And in an era of high-stakes math and reading tests, computer science often gets pushed aside altogether. “There is less time in schools' schedules, and less money in schools' budgets, for subjects that are not viewed as essential,” Vaidyanathan observes.
Before becoming a computer science teacher and a science, technology, engineering and mathematics (STEM) program specialist in the Los Altos School District, Vaidyanathan worked as a software engineer at information technology giant Unisys and at two Silicon Valley start-ups. Her experience in the tech industry has made her keenly aware of another hitch in the plan to turn every student into a hire-ready programmer: “There's a big difference between learning the basics of coding and knowing it well enough to do it professionally.” The wide gap between novice and expert in this field is the reason she pushed her district to begin coding instruction in kindergarten. “Learning coding is like learning a foreign language,” Vaidyanathan explains. “We wouldn't expect students to be fluent in French or Spanish because they took a couple of semesters of instruction in high school.”
Particularly challenging is the project of extending coding instruction beyond the confines of wealthy, mostly white and Asian communities such as Los Altos. Vaidyanathan's students start out with almost numberless advantages. They enter her classroom equipped with knowledge of computers and how they work; some of them have already begun to learn about coding at home or in extracurricular enrichment programs. The coding class at their public school is supported by a foundation that collects and distributes donations from the families of students enrolled in the district. The district's schools—themselves fully furnished with desktop and tablet computers—are located in the heart of Silicon Valley, and many of their students' mothers and fathers work at the nearby headquarters of Google, Apple or Facebook. These students have been gently but firmly guided down a path by the adults in their lives—a path that leads to abundant opportunity. And yet the presence of such privileged students in computing classes—and later on, in the tech industry and in the field of computer science—is often presented as the product of a “natural” sorting process, based on individuals' innate preferences and abilities.
Jane Margolis is familiar with this presumption and its corollary: that poor students and students of color must not want to learn how to code. Margolis, a senior researcher at the University of California, Los Angeles, Graduate School of Education & Information Studies, undertook an intensive study on how computer science is taught in three diverse public high schools in Los Angeles. The result was the 2008 book Stuck in the Shallow End: Education, Race, and Computing, a troubling account of what Margolis and her collaborators call “virtual segregation.” Students who go to school in affluent communities, they found, are much more likely to have access to a wide range of computer science offerings—courses that are academically challenging, creative and collaborative. Poor students and students of color, in contrast, are often offered only the most basic cut-and-paste computing instruction, often using inadequate equipment.
Even when the schools serving these students possess adequate facilities, they may be “technology rich, but curriculum poor,” in the words of Margolis and her colleagues, lacking the elements of a full-fledged education in computer science: “powerful learning experiences in a sequence of classes,” along with “years of thoughtful, informed guidance and support.” Curricular offerings cannot be one-size-fits-all, she and her co-authors maintain, but rather must take into account racial and ethnic groups' disparate histories of access to technology and training. These “have been so different, the playing fields so uneven, the chasm so deep and wide, that people are living in two different worlds,” Margolis and her co-authors observe. The easy familiarity with computers that is taken for granted among affluent students may be entirely absent among their less privileged peers. Truly equal access to computer science education, Margolis tells me, is “a civil rights issue for the 21st century.”
Having documented the very unequal situation on the ground, she says, “we felt we had to do something about it.” She and her colleagues thus created Exploring Computer Science (ECS), a university/K–12 partnership program that has developed an introductory curriculum for high school computer science students. ECS also offers professional development to teachers in the Los Angeles Unified School District—and now to nearly two dozen other districts nationwide. Participating teachers learn how to provide hands-on computer science instruction that is rigorous yet engaging, and they are joined with other teachers in an active and growing network. Whereas other organizations, among them Black Girls Code and Hack the Hood, focus their efforts outside of school time, such as during weekend workshops and summer boot camps, Margolis and her team are committed to serving underprivileged students in their schools, aware that financial and logistic barriers often prevent such students from taking advantage of extracurricular opportunities.
Nancy Se shares this commitment. Trained by Exploring Computer Science in 2013, she has since become an ECS “teacher leader,” helping other teachers learn how to engage their students in computer science. Se teaches at Augustus F. Hawkins High School in South Los Angeles, where, in the 2013–2014 school year, 99 percent of the student body was African-American or Latino and 75 percent qualified as “economically disadvantaged,” according to U.S. News & World Report. Se sees the challenges faced by the coding-for-all movement up close every day. “Many of my students don't have computers in their homes,” she says. “Their only access to the Internet is through their phones, which they use for games and texting.” Given this limited acquaintance with technology, her students have a lot of ground to cover—learning not only about the manifold functions of computers but also the behind-the-curtain reality that people design and program these machines. Most daunting of all, Se's students must overcome stereotypes about whom computer science is “for.” “Working with computers, knowing how to code—this is foreign to the identities they've developed, even as students still in high school,” Se notes. “In my classes, the students and I aren't just exploring an academic subject. We're reinventing their sense of themselves in the face of very powerful cultural messages.”
Paging through essays written by her 12th graders, Se points to one in which a student expresses hope for a steady income for her and her baby. “Before taking a class in computer science, it never crossed my mind that I could be involved in or even major in that field,” this student wrote. “As a single mother who wants to create the best future possible for my child, I also think it would be great to have a job doing what I love and [one that] provides financial stability.” Writes another student: “Economic struggles have been around my whole life. Nonetheless, I refuse to let limited resources bring me down. On the contrary, they motivate me to utilize education as a path and guide me to life-long success. I yearn to one day possess the title of [a computer] animator with an average salary of $50,281 per year. I aspire to bring my current financial struggles to an end and take care of my family on my own.”
Indeed, one of the rationales often cited for expanding coding instruction, especially in poor communities, is that a lack of programming knowledge will shut young people out of a lucrative industry. But many critics argue that a narrow focus on a technical skill such as coding is not a sustainable approach. Larry Cuban, a professor emeritus of education at Stanford University, points to the nation's experiment with the early computer language Logo in the 1970s and 1980s. Led by Massachusetts Institute of Technology professor Seymour Papert, the effort to teach students Logo flared and failed, Cuban says, because it did not teach the complex skills and rich knowledge that they need. He predicts that the same fate will befall the coding-for-all movement, which he believes is being urged on schools by business leaders with their own bottom lines in mind: it is a “tissue paper reform” that, “after one or two uses, shreds and is tossed away.”
If instruction in coding is not the answer—or at least not all of it—then what is? Jeannette M. Wing believes she knows: computational thinking. Wing is a consulting professor of computer science at Carnegie Mellon University and a corporate vice president of Microsoft Research. In 2006 she published an article in an obscure journal that quickly became a classic. “Computational thinking is a fundamental skill for everyone, not just for computer scientists,” she boldly declared. This mode of thinking, she went on to explain, “involves solving problems, designing systems, and understanding human behavior, by drawing on the concepts fundamental to computer science.”
“Computational thinking includes the ability to abstract, to engage in logical and symbolic reasoning, to take a big problem and decompose it into many smaller problems,” Wing says. “These are skills that everyone can use, whether they're using a computer or not.”
In her article, she wrote, “To reading, writing, and arithmetic, we should add computational thinking to every child's analytical ability.” One of the educators who heard Wing's call was Aileen Owens. Owens used Wing's ideas to make computational thinking a key part of the curriculum at South Fayette Township School District, outside of Pittsburgh, where she is director of technology and innovation. In her view, instruction in computational thinking should begin early and grow progressively deeper and more complex through a series of graduated and interrelated projects.
In South Fayette, students in kindergarten through second grade start learning the concepts behind programming by using what is known as a block-based coding program. In the program, called Scratch, they drag and drop blocks containing discrete commands: “Move 10 steps,” “Wait 5 secs,” “Turn left 90 degrees.” By arranging these commands in a precise order, the students make things happen on their screens (a cartoon character advances, pauses, turns left) and begin to understand more generally how to give instructions to computers—instructions that become increasingly complex as they grow older. In grades three through five, students program motors and sensors and build Lego robots that move under their control. Computer-aided design (CAD) is taught in grades six through eight; students use CAD software to design their own inventions, and they prototype them by using a 3-D printer. By seventh grade, students have transitioned from block-based coding to text-based coding: writing code in the more complex but more flexible language employed by professional programmers.
“At every stage, the goal is to scaffold computational thinking so that each new level of understanding builds on the one that came before,” Owens explains. “This is about much more than coding. This is about teaching habits of mind that can be used to solve problems in any realm—habits like breaking down a problem into its component parts, running small experiments to see which approaches fail and which succeed, and working together with other people to find and apply the best ideas.” Using these strategies in a variety of settings shows students that computational thinking is useful well beyond the world of computers.
Even the very youngest children can learn such habits of mind. “We're teaching our kids to be problem solvers, to think logically, to engage in abstract thinking, to find patterns, to identify alternatives,” says Melissa Unger, the science, technology, engineering, arts and mathematics (STEAM) teacher for kindergarten through second grade at South Fayette. “We start with questions like ‘What are instructions? How do you give instructions so that a computer knows what you want it to do?’ We have students ‘program’ their classmates, guiding them through a maze by holding up cards with arrows on them.”
Like Los Altos, South Fayette is an affluent, highly educated community, home to professors from the area's many universities, as well as professionals who work in Pittsburgh's burgeoning tech sector. But computational thinking can be taught to all kinds of kids, as Excel Public Charter School in Kent, Wash., demonstrates. Excel enrolls a student body that is 37 percent African-American and 19 percent Latino; more than half its students qualify for free or reduced-price lunch. Although the school is located less than 20 miles from the Seattle area, home to tech giants Amazon and Microsoft, the students at Excel often feel cut off from the world of computers.
Eli Sheldon, the school's computational thinking program manager, is aiming to change that. “I work with teachers to incorporate computational thinking into the subjects they teach, whether it's English, or math, or biology,” Sheldon says. “Because students are encountering the same mental tools across many different courses, they come to see how universally applicable they are, even outside of school.” Sheldon has collaborated with a math teacher to create a class unit on analyzing motion data from a professional basketball game and with a humanities teacher to develop interactive case studies drawn from the criminal justice system.
Proponents of the teaching of computational thinking believe it represents all the qualities that mere coding instruction lacks: a rich and deep intellectual discipline; a flexible set of mental tools that can be used in many and varied situations; and a body of knowledge and skills of genuine and lasting usefulness—in school, in the workplace and beyond.
Before arriving at Excel, Sheldon worked for four years as a program manager at Microsoft, where he saw computational thinking put to real-world use. “Over and over, I saw engineers take an incredibly complex problem and solve it using computational thinking,” Sheldon recounts. “They were really good at breaking down the problem, putting the parts in logical order, testing one part at a time to see how that one small change affected the outcome. I watched them, and I thought, ‘Everyone should know how to do that.’”
The nation's approach toward computer science education is still taking shape. As the assistant director for learning and innovation at the White House's Office of Science and Technology Policy, Kumar Garg is one of those steering the effort. He can point to some successes: “When President Obama took office, only 11 states allowed computer science courses to count toward graduation,” Garg observes. “Since then, there's been a sea change: [28 states and Washington, D.C.] now allow computer science courses to be applied to math or science requirements.” Garg also praises a “reboot” of the AP computer science course now under way at the College Board. The new course and exam will focus on both coding and computational thinking, an approach Garg endorses. “Students do need to learn the fundamentals of computer science, but coding is a way of helping students see what it's all for,” he explains.
Under its Computer Science for All initiative, Garg notes, the Obama administration has asked school districts to submit five-year plans for expanding access to computer science instruction; districts with well-designed proposals will be granted funding for implementation. Of course, some schools are not waiting on the slow-grinding gears of the federal government to get started on innovating in computing education, whereas others have yet to even begin tackling the subject—a situation that calls to mind an aphorism attributed to science-fiction writer William Gibson, whose work explores the interactions between humans and technology. “The future is already here,” Gibson is said to have observed. “It's just not evenly distributed yet.

MORE TO EXPLORE

Computational Thinking. Jeannette M. Wing in Communications of the Association for Computing Machinery, Vol. 49, No. 3, pages 33–35; March 2006.

Stuck in the Shallow End: Education, Race and Computing. Jane Margolis. MIT Press, 2008.

Learn about President Barack Obama's Computer Science for All initiative to empower a generation of American students with the computer science skills they need to thrive in a digital economy: www.whitehouse.gov/blog/2016/01/30/computer-science-all

FROM OUR ARCHIVES

Machine Learning. Seth Fletcher; August 2013.

Annie Murphy Paul is a frequent contributor to the New York Times, Time magazine and Slate. Paul is author of The Cult of Personality Testing and Origins, which was included in the New York Times' list of 100 Notable Books of 2010. Her next book, forthcoming from Crown, is entitled Brilliant: The Science of How We Get Smarter.

More by Annie Murphy Paul

This article was originally published with the title “The Coding Revolution” in Scientific American Magazine Vol. 315 No. 2 (August 2016), p. 42
doi:10.1038/scientificamerican0816-42View This Issue

Expand Your World with Science

Learn and share the most exciting discoveries, innovations and ideas shaping our world today.
SubscribeSign up for our newslettersSee the latest storiesRead the latest issueFollow Us:

	Return & Refund Policy
	About
	Press Room

	FAQs
	Contact Us
	International Editions

	Advertise
	SA Custom Media
	Terms of Use

	Privacy Policy
	California Consumer Privacy Statement
	Use of cookies/Do not sell my data

Scientific American is part of Springer Nature, which owns or has commercial relations with thousands of scientific publications (many of them can be found at www.springernature.com/us). Scientific American maintains a strict policy of editorial independence in reporting developments in science to our readers.
© 2024 SCIENTIFIC AMERICAN, A DIVISION OF SPRINGER NATURE AMERICA, INC.
ALL RIGHTS RESERVED.

