Skip to main content

Shrinking Memory


On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.


Ferroelectric random-access memory, or FRAM, relies on lining up dipoles (separated charges) to represent 0 and 1, giving it the speed of RAM and, notably, the ability to retain data without power. Unfortunately, FRAM does not offer as much storage space: dipoles in small ferroelectric bits do not all line up easily. Now University of Arkansas researchers may have discovered a way to shrink ferroelectric bits. They simulated the behavior of dipoles in nanosize disks and rods of perovskite, a promising ferroelectric material, and found that they spontaneously twist into left- and right-handed spiral shapes. Such vortices mark a new phase in ferroelectric materials, and because they are tiny and interact weakly with one another, they can be packed very closely together, which could increase their memory density 100,000 times. Read the group's report in the December 9, 2004, Nature.