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Robot-assisted task-oriented upper extremity skill training
in cervical spinal cord injury: a feasibility study

DAMM Vanmulken1,2, AIF Spooren2, HMH Bongers1 and HAM Seelen2,3

Study design: Prospective multiple case study.
Objectives: To test (1) the feasibility of haptic robot technology (Haptic Master (HM)) use to improve arm–hand function (AHF) and
arm–hand skill performance (AHSP) in persons with a cervical spinal cord injury (C-SCI), (2) inventory participants’ motivation and
expectation to work with the robot technology used and (3) to descriptively report the results in individual cases.
Setting: Rehabilitation Centre.
Methods: Five C-SCI patients were trained for 6 weeks, 3 days per week, 60 min per day. Therapists filled out the Usefulness,
Satisfaction and Ease-of-use questionnaire (USE). The Intrinsic Motivational Inventory (IMI) and credibility and expectancy
questionnaire (CEQ) were filled out by participants. Performance at activity level was gauged using the Van Lieshout test for AHF in
Tetraplegia and the Spinal Cord Independence Measure. Function level was gauged using muscle strength testing and the International
Classification for Surgery of the Hand in Tetraplegia.
Results: As to the feasibility of the application of haptic robot technology, the mean USE score was 65%. Mean IMI and CEQ results
were 67% and 60%, respectively. Participants were motivated to train with the HM. All participants rated credibility higher than
expectations regarding the improvement. In the current patients, little progress was demonstrated at the International Classification of
Functioning, Disability and Health function and the activity level.
Conclusion: It is feasible to train C-SCI persons with the HM. Therapists report that working with the HM is easy to learn and easy to
perform. Usability of the HM may be improved. Further research is needed to assess in which group of C-SCI and at which stage of
rehabilitation HM training may be most beneficial.
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INTRODUCTION

Persons with a cervical spinal cord injury (C-SCI) have to cope with a
limited arm–hand function (AHF), which causes difficulties or even an
inability to perform daily activities.1 In the present study, AHF refers
to the International Classification of Functioning, Disability and
Health function level, whereas arm–hand skill performance (AHSP)
refers to the International Classification of Functioning, Disability and
Health activity level and includes a broad range of activities of different
complexity.2

Patients with a C-SCI give a high priority to therapy aimed at
improving their AHSP, relative to other therapy aims in rehabilitation,
because it may strongly improve their quality of life.3 As rehabilitation
time is too short to train a comprehensive set of skills, new therapy
approaches need to be developed. These new approaches should take
into account the client-dependent versatility of training goals, the
limited amount of time available, the necessary prerequisites as to
training physiology (like repetition maximum, dynamic and endur-
ance strength training, coordination, overload, training specificity and
functional training4) and motor learning (like context specificity,
distribution-based practice, whole learning, shaping, feedback,
guidance and variability),5 as well as patients’ motivation and the

(concomitant) level of challenge to the patient. To this end, Spooren
et al.6 developed, evaluated and implemented a modular task-oriented
client-centred training programme to improve AHSP (ToCUEST). In
clinical rehabilitation practice, however, it is well known that high
levels of movement repetition and lack of training variation may lead
to patients becoming bored, and thus may lead to decreased
motivation to train and to lower levels of therapy adherence. To
explore the possibilities for extending ToCUEST’s training variation,
which, in turn, might further improve patients’ training motivation,5,7

the use of training technology was considered, analogous to the work
of Timmermans et al.,8,9 who developed and evaluated a technology-
assisted task-oriented arm training approach (T-TOAT) for persons
with stroke. The use of such a training approach to improve AHSP in
persons with C-SCI has not yet been reported. This type of training
may improve patients’ engagement, because it provides more variation
in their (regular) therapy programme. Also, patients are enabled to
perform activities they cannot perform without the (arm)support of
the haptic robot. This, in turn, increases motivation.
The main aim of this study has been to test the feasibility of the use

of haptic robot technology to improve the training content variability
regarding the AHSP training. As part of this study, participants’
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motivation and expectation as to the technique used were also
inventoried. Changes on individuals’ function and activity level are
briefly reported.

MATERIALS AND METHODS

Participants
Participants were recruited from the databases of Adelante Rehabilitation
Centre. Inclusion criteria were as follows: C-SCI level C4–C7; classified as A–D
on the ASIA Impairment Scale;10 age between 18 and 70 years; postrehabilita-
tion phase 41 year; problems with AHSP; minimal wrist extension of 10º;
maximal finger extension of 30º; active in daily life; and able to sit up for at least
4 h. Exclusion criteria were as follows: additional neurologic, orthopaedic or
rheumatic illnesses, which may interfere with AHF; severe spasticity (Ashworth
score ⩾ 3); and inability to perform AHF and AHSP measurements.

Design
This descriptive study included several cases of individual C-SCI patients.
Usability, from the perspective of the therapists who conducted the training,
was measured at the end of the training phase. Patient’s motivation and
expectations were inventoried after the first week of the training. The
participants were trained three times per week for 6 weeks. Measurements
regarding the function level and the activity level were performed 1 week before
the training started (T0), after 4 weeks of training (T1) and 1 week after the
cessation of training (T2). Each training day consisted of 2× 30min,
interspaced by a 30-min break.

Materials and intervention
Trained skills were, among others, ‘eating with fork and knife’, ‘taking money
out of a purse’ and ‘moving a cup’. Per participant client-specific skills were
chosen, in accordance with their level of impairment. All skills were broken
down into subskills or components.9,11 For each of these components, exercises
were offered at increasing levels of difficulty with the feedback delivered
according to the shaping principles.12 Exercise progression was based on
principles of training physiology4 and motor learning.5 Regarding training
physiology, a goal-dependent functional and specific skill training was offered
with training loads exceeding the patient’s metabolic capacity (overload
principle4). As to motor learning principles, ‘over-learning strategies’ (that is,
continued practice after performance), ‘exercise variability’ to improve patient’s
motivation and conserve training effect and ‘guidance and feedback’5,9

(provided by the haptic robot device8,11) were used. Patients were offered a
task-oriented training, that is, a repetitive training of self-selected, real life
activities, to also improve their motivation.11 This training was supported by
haptic robot technology (Haptic Master (HM), Moog, Nieuw-Vennep, The
Netherlands) (see Figures 1 and 2).
The HM is three degrees of freedom admittance-controlled robotic system. It

is suitable for larger workspaces and high forces can be exerted. The patient’s
arm was attached to the robot using a customised gimbal and an orthosis at the

distal part of the forearm. Dedicated software, called ‘Haptic-TOAT’, as used in
the T-TOAT study of Timmermans et al.,11 was applied. The first time the
patient performed a specific arm–hand skill, the spatial movement trajectory of
the orthosis was electronically recorded by the HM in terms of 3D positions
(that is, x,y,z coordinates) with a sample rate of 100Hz. During this recording,
the patient’s arm, which was attached to the HM end-effector, was moved along
the optimal path either passively (by the therapist) or assisted actively (by the
patient himself, aided by the therapist). If necessary the movement path
recorded could be edited (adapted) or filtered (smoothed) by the Haptic-TOAT
software.
The HM assisted in supporting the patient’s arm movements during skill

performance. It allowed patients to practise in three modes: the passive mode in
which the patient’s arm was moved by the device; the active-assisted mode in
which the patient was partially assisted in performing a specific movement or
task; and the active mode in which the patient performed the required
movement or task against moderate resistance. The training activities were
instructed using a video. Training was supervised by senior occupational
therapists. During training the HM provided kinaesthetic feedback regarding
the movement performed. For example, if the patient’s movement deviated too
much from the predefined (that is, recorded) movement trajectory, the HM led
the arm back onto the correct path using spring-like forces. Another example of
the HM features was ‘tunnelling’, in which the predefined movement trajectory
was modelled as a 3D tunnel beyond which no movement was possible, thus
preventing the excessive movement deviations. It was possible for patients to
train on bimanual activities. However, only one arm was supported by the HM.
Prior to the start of the training patients were allowed to choose which arm was
to be trained using the HM. By training bimanual tasks the non-supported arm
was also trained.
The Medical Ethics Committee of Maastricht University approved the

research protocol. All participants gave their written informed consent before
the start of the study.

Measurements
All measurements were conducted by experienced therapists.

Usability. The Usefulness, Satisfaction and Ease-of-use questionnaire13 was
filled out by the occupational therapists to gauge the feasibility of the HM
training and to gain insight in its usability and ease of use. It consists of four
items (that is, ‘usefulness’, ‘ease of use’, ‘easy to learn’ and ‘satisfaction’), each
containing between 4 and 11 subitems, all rated on a 7-point Likert scale.

Motivation and expectations. The intrinsic motivation inventory (IMI)14 was
used to assess participants’ subjective experience related to intrinsic motivation
and self-regulation. It consists of six different items (that is, ‘interest/pleasure’,
‘experienced competence’, ‘effort/importance’, ‘pressure/tension’, ‘value/benefit’
and ‘solidarity’). The maximum total IMI score is 42. Both reliability and
validity of the IMI have been established in various populations.14

The credibility/expectancy questionnaire15 assesses the credibility and
participant’s expectations regarding training. Its total score ranges between 3
and 27. The questionnaire has a high internal consistency within each factor
and a good test-retest reliability.15

Activity level. The Van Lieshout test for Tetraplegia-short form16,17 was used
to asses actual performance of arm–hand skills. Its 10 items each range between
0 and 5. The Van Lieshout test for Tetraplegia-short form is responsive to
measure changes in AHSP during rehabilitation in people with a C-SCI.17

The Spinal Cord Independence Measure (version III)18 rates selfcare,
respiration and sphincter management, mobility in the room and toilet and
mobility indoors and outdoors (on even surface). It is reliable and valid for
traumatic spinal cord injury.18 The maximum score is 100.

Function level. The International Classification for Surgery of the Hand in
Tetraplegia19 and the MicroFet_2 (Hoggan Health Industries, Salt Lake City,
UT, USA) strength measurement were used.20 The International Classification
for Surgery of the Hand in Tetraplegia examines the motor and sensory
function and classifies the neurological status. The maximum score 9 indicates
only loss of intrinsic hand-muscle function, whereas score 0 indicates there areFigure 1 Move a cup with support of the Haptic Master.
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no muscles suitable for surgical transfers. The MicroFet measures force (N)
exerted. Each measurement is performed three times, the highest of which is
then used.

Data analysis
As this was a feasibility study; all data are reported descriptively.

RESULTS

Participants’ characteristics are presented in Table 1.
P2 was classified as an ASIA Impairment Scale-A patient. It should

be noted, however, that there was a zone of partial innervation.10

(Details: see Table 1.) P2 had one actively functioning hand, whereas
the other hand was used with a tenodesis grip. P5 underwent
reconstructive arm–hand surgery. He had a triceps reconstruction
and surgery for wrist extension. He used both the hands with a
tenodesis function.
Three participants completed the whole training programme. Early

withdrawal of 2 patients was due to health issues unrelated to the
training. Four persons chose to train the side with the poorest hand
function. P3 trained the left hand, because the right hand did not have
enough active function to be trained with HM. P3 was, however, able
to use the right hand for support in bimanual tasks. No adverse
training effects were found. All 5 participants were able to train with
the HM.
In Table 2, an overview of the baseline level of functioning

of the three participants who completed the whole training is
presented.
P4 had already high baseline levels. He was ADL (activities of daily

living) independent and used a manual wheelchair. P2 also used a

manual wheelchair but needed some assistance for movements outside
and for ADL care. P5 used an electric wheelchair and was for the
greater part ADL dependent.
The average (normalised) Usefulness, Satisfaction and Ease-of-use

questionnaire results, rated by the therapists, amounted to 71.0% (s.d.:
13.4%) for the item ‘ease of use’, 93.9% (s.d.: 7.5%) for the item ‘easy
to learn’, 59.2% (s.d.: 25.5%) for ‘satisfaction’ and 47.0% (s.d.: 18.4%)
for ‘usefulness’. The average (normalised) total score of the Usefulness,
Satisfaction and Ease-of-use questionnaire corresponded to 65.1%
(s.d.: 5.0%).
As to the IMI, all participants scored low on ‘pressure/tension’

(mean normalised score: 21.1%, s.d.: 1.3%). The mean (normalised)
score of the item ‘effort/importance’ was highest—that is, 80.6%
(s.d.: 1.8%). The items ‘interest/pleasure’, ‘experienced competence’
and ‘value/benefit’ all were rated above average—that is, 73.5% (s.d.:
3.2%), 72.4% (s.d.: 4.1%), 72.7% (s.d.: 4.7%) and 69.7% (s.d.: 4.4%),
respectively. P1 and P2 had the largest motivation, whereas P5 was
least intrinsically motivated. The mean IMI score of the whole group
was 66.1% (s.d.: 14.7%).
Four participants scored high on credibility—that is, normalised

credibility scores ⩾ 74%. In each individual participant, the
credibility scores were higher than the expectancy scores. The mean

Figure 2 Orthosis attached to the HM.

Table 1 Participant characteristics

Patient code Gender (M/F) Age (years) Postinjury time (years) ASIA score AIS score Hand dominance (L/R) Trained hand (L/R)

P1a F 70 2.5 C6 D R L

P2b M 25 9.0 C7 A R L

P3a M 62 10.5 C5–C7 C L L

P4 M 34 3.5 C7 B R R

P5 M 45 15.5 C5 B R R

Abbreviations: AIS, ASIA Impairment Scale; C, cervical level; F, female; L, left; M, male; P, participant; R, right; T, Thoracic level.
aParticipants who did not complete the whole programme.
bZone of partial innervation: sensory right: T11, left T11; motor right: T1, left: T1.

Table 2 Level of functioning at baseline

Trained side P2 Left P4 Right P5a Right

MRC (grades: 0–5)
Elbow flexion 5 5 4

Elbow extension 4 5 3

Wrist extension 4 4 4

Finger flexion 4 3 0

Finger abduction 2 2 0

Muscle strength (N)
Elbow flexion/extensionb 155/66 226/86 144/48

Shoulder exo/endo/abd 57/117/88 124/280/186 46/84/160

Wrist extension 62 188 44

ICSHT 3 5 1

VLT-sf (max=50) 29 48 17

SCIM (max=100) 51 72 36

Abbreviations: abd, abduction; endo, endorotation; exo, exorotation; ICSHT, International
Classification for Surgery of the Hand in Tetraplegia; P, participant; MRC, Medical Research
Council; SCIM, spinal cord independence measure; VLT-sf, Van Lieshout Hand function test for
Tetraplegia (short form).
aP5 had triceps reconstruction and surgery for wrist extension. He had a tenodesis grip.
bAll muscle-strength tests were performed while the participants were seated. When elbow
extensor and flexor muscle strength was tested, the upper arm was held against the trunk, that
is, in a 0º shoulder flexion position, whereas the forearm was supinated with an elbow flexion
angle of 90º. Muscle strength of the elbow extensors was measured in the vertical direction,
directed with gravity.
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(normalised) total score on the credibility/expectancy questionnaire
was 60.7% (s.d.: 20.6%).
No large improvements at activity level were found. As to the Spinal

Cord Independence Measure, all participants scored high on ‘self care’
and ‘respiration and sphincter management’, whereas they scored low
on ‘mobility’. There were no discernable differences on the spinal cord
independence measure between the different times of measurement.
Between T1 and T2 participant P2 and P5 progressed on one Van

Lieshout test for Tetraplegia-short form item. P4 already had a
maximum score of 5 on all the tasks, except for ‘thumb grip’ and
‘pen grip’ (score 4).
The International Classification for Surgery of the Hand in

Tetraplegia did not change in any of the participants. As to the
muscle strength, P2 improved on all major arm muscles (improve-
ment ranging between 8% and 22%). P5 improved on elbow flexion
(23%), shoulder abduction (13%) and wrist extension (17%).
P4 showed no progress on muscle strength.

DISCUSSION

This study aimed to investigate the feasibility to train AHSP in persons
with a C-SCI using robot technology. Five C-SCI patients with
different lesion levels and different levels of AHF were trained with
the HM. Usefulness, Satisfaction and Ease-of-use questionnaire data
revealed that working with the robotic device was easy to learn and
easy to do. The usability of the current robotic system may, however,
be improved. Currently, it is only possible to train arm activities and
skills within a limited movement space. Participants reported that the
orthosis that attaches the arm to the HM sometimes limits fluent
movement.
Therapists applied the forearm orthosis, which was considered very

easy to do. One participant was even able to apply the orthosis himself.
The robotic system facilitated training of different activities and skills,
at variable levels of task difficulty. Even bimanual skills could be
trained on. However, because of current software and hardware
limitations, complex movements in a larger movement space and
with many different movement components were not (yet) possible.
With the current software a therapist’s intervention is needed to start
each different activity separately. Being able to programme sequences
of activities may enable patients to train more independently.
The scores on intrinsic motivation, credibility and expectancy were

diverse among the participants. The least motivated participant also
had the lowest expectations regarding improvement. This participant
had the highest lesion level (C5, ASIA Impairment Scale-B) and the
longest time since injury. Another participant, with a lower than
average motivation and expectancy score, already had a rather good
AHF, which may have been the reason for his lower scores. Since time
post injury was long, participants did not expect large improvements
regarding their arm–hand function as a result of this training.
Participants did, however, report that, in their own opinion, the
robotic system may be an adequate tool to train AHSP in an earlier
phase post injury. Maybe there is a specific subgroup of C-SCI
patients, that is, those with a relatively short post-injury time and a
moderately to severely impaired arm–hand function, who may be
highly motivated and may optimally benefit from robot-assisted
training. This, however, needs further investigation.

Considerations and future research
In this feasibility study, participants were trained in an exercise lab at
the rehabilitation centre. The (expensive) robotic device cannot be
easily transported to a patient’s room or home, which limits its
widespread use. Also, the effect of intensity, frequency and duration of

the training programme on possible improvement of AHF and AHSP
needs to be further investigated in a broader group of persons with a
C-SCI. For example, future studies should investigate whether effects
of training with technology regarding AHF and AHSP differ between
C-SCI patients in the chronic phase and the acute phase. Furthermore,
it is important to investigate the possible differences in training with
technology among persons with a higher cervical lesion (C4–C5) with
poorer AHF and AHSP, results of which may then be compared with
those of persons with a lower cervical lesion (C6–C8).

CONCLUSION

It is feasible to train persons with a C-SCI with robotic systems like the
HM. Working with the HM is easy to learn and easy to do, although
the usability of this robotic system may be improved. Participants
found the training to be credible. Most of them were motivated,
although expectations as to improvement on AHF and AHSP were
lower. The study population was not large enough to ascertain
whether training with the HM may improve AHSP in persons with
a C-SCI who finished active rehabilitation 1 year earlier.
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