Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Mapping networks of physical interactions between genomic elements using 5C technology

Abstract

Genomic elements separated by large genomic distances can physically interact to mediate long-range gene regulation and other chromosomal processes. Interactions between genomic elements can be detected using the chromosome conformation capture (3C) technology. We recently developed a high-throughput adaptation of 3C, 3C-carbon copy (5C), that is used to measure networks of millions of chromatin interactions in parallel. As in 3C, cells are treated with formaldehyde to cross-link chromatin interactions. The chromatin is solubilized, digested with a restriction enzyme and ligated at low DNA concentration to promote intra-molecular ligation of cross-linked DNA fragments. Ligation products are subsequently purified to generate a 3C library. The 5C technology then employs highly multiplexed ligation-mediated amplification (LMA) to detect and amplify 3C ligation junctions. The resulting 5C library of ligated primers is analyzed using either microarray detection or ultra-high-throughput DNA sequencing. The 5C protocol described here can be completed in 13 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the chromosome conformation capture (3C) methodology.
Figure 2: Diagram of the 3C-carbon copy (5C) methodology.
Figure 3: 3C-carbon copy (5C) technology primer design.
Figure 4: Diagram illustrating a 'fixed' 3C-carbon copy technology (5C) analysis between the locus control region (LCR) and the surrounding beta-globin locus.
Figure 5: Diagram illustrating the generation of dense 3C-carbon copy (5C) technology interaction maps.
Figure 6: Representative titration of a control or chromosome conformation capture (3C) library with one 3C-carbon copy (5C) technology primer pair.
Figure 7: Representative titration of a control or chromosome conformation capture (3C) library.
Figure 8: Generation of a control library from bacterial artificial chromosome (BAC) DNA.
Figure 9: Generation of a chromosome conformation capture (3C) library from mammalian cells.
Figure 10: Example of a dense interaction map analysis in a gene desert region.
Figure 11: Example of a fixed 3C-carbon copy (5C) technology analysis.

Similar content being viewed by others

References

  1. ENCODE-consortium The ENCODE (ENCyclopedia Of DNA Elements) project. Science 306, 636–640 (2004).

  2. Kleinjan, D.A. & van Heyningen, V. Long-range control of gene expression: emerging mechanisms and disruption in disease. Am. J. Hum. Genet. 76, 8–32 (2005).

    Article  CAS  Google Scholar 

  3. West, A.G. & Fraser, P. Remote control of gene transcription. Hum. Mol. Genet. 14, R101–R111 (2005).

    Article  CAS  Google Scholar 

  4. Lomvardas, S. et al. Interchromosomal interactions and olfactory receptor choice. Cell 126, 403–413 (2006).

    Article  CAS  Google Scholar 

  5. Dekker, J. A closer look at long-range chromosomal interactions. Trends Biochem. Sci. 28, 277–280 (2003).

    Article  CAS  Google Scholar 

  6. de Laat, W. & Grosveld, F. Spatial organization of gene expression: the active chromatin hub. Chromosome Res. 11, 447–459 (2003).

    Article  CAS  Google Scholar 

  7. Chambeyron, S. & Bickmore, W.A. Does looping and clustering in the nucleus regulate gene expression? Curr. Opin. Cell Biol. 16, 256–262 (2004).

    Article  CAS  Google Scholar 

  8. Dekker, J. The three C's of chromosome conformation capture: controls, controls, controls. Nat. Methods 3, 17–21 (2006).

    Article  CAS  Google Scholar 

  9. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  CAS  Google Scholar 

  10. Miele, A. et al. Mapping chromatin interactions by Chromosome Conformation Capture (3C). in Curr. Protoc. Mol. Biol. Vol. Suppl 74. (eds. Ausubel, F.M., Brent, R. Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. & Struhl, K.) 21.11.21–21.11-20 (John Wiley & Sons, Hoboken, New Jersey, 2006).

  11. Splinter, E., Grosveld, F. & de Laat, W. 3C technology: analyzing the spatial organization of genomic loci in vivo . Methods Enzymol. 375, 493–507 (2004).

    Article  CAS  Google Scholar 

  12. Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F. & de Laat, W. Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol. Cell 10, 1453–1465 (2002).

    Article  CAS  Google Scholar 

  13. Palstra, R.J. et al. The beta-globin nuclear compartment in development and erythroid differentiation. Nat. Genet. 35, 190–194 (2003).

    Article  CAS  Google Scholar 

  14. Vakoc, C.R. et al. Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol. Cell 17, 453–462 (2005).

    Article  CAS  Google Scholar 

  15. Dostie, J. et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309 (2006).

    Article  CAS  Google Scholar 

  16. Spilianakis, C.G. & Flavell, R.A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat. Immunol. 5, 1017–1027 (2004).

    Article  CAS  Google Scholar 

  17. Liu, Z. & Garrard, W.T. Long-range interactions between three transcriptional enhancers, active V kappa gene promoters, and a 3′ boundary sequence spanning 46 kilobases. Mol. Cell. Biol. 25, 3220–3231 (2005).

    Article  CAS  Google Scholar 

  18. Murrell, A., Heeson, S. & Reik, W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat. Genet. 36, 889–893 (2004).

    Article  CAS  Google Scholar 

  19. Spilianakis, C.G., Lolioti, M.D., Town, T., Lee, G.R. & Flavell, R.A. Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645 (2005).

    Article  CAS  Google Scholar 

  20. Kiermer, V. Story of C's. Nat. Methods 3, 872–873 (2006).

    Article  CAS  Google Scholar 

  21. Hardenbol, P. et al. Highly multiplexed molecular inversion probe genotyping: over 10,000 targeted SNPs genotyped in a single tube assay. Genome Res. 15, 269–275 (2005).

    Article  CAS  Google Scholar 

  22. Wang, Y. et al. Allele quantification using molecular inversion probes (MIP). Nucleic Acids Res. 33, e183 (2005).

    Article  Google Scholar 

  23. Yuen, T., Wurmbach, E., Pfeffer, R.L., Ebersole, R.J. & Sealfon, S.C. Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. Nucleic Acids Res. 30, e48 (2002).

    Article  Google Scholar 

  24. Ling, J.Q. et al. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 312, 269–272 (2006).

    Article  CAS  Google Scholar 

  25. Wurtele, H. & Chartrand, P. Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended chromosome conformation capture methodology. Chromosome Res. 14, 477–495 (2006).

    Article  Google Scholar 

  26. Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354 (2006).

    Article  CAS  Google Scholar 

  27. Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet. 38, 1341–1347 (2006).

    Article  CAS  Google Scholar 

  28. Gheldof, N., Tabuchi, T.M. & Dekker, J. The active FMR1 promoter is associated with a large domain of altered chromatin conformation with embedded local histone modifications. Proc. Natl. Acad. Sci. USA 103, 12463–12468 (2006).

    Article  CAS  Google Scholar 

  29. Rychlik, W., Spencer, W.J. & Rhoads, R.E. Optimization of the annealing temperature for DNA amplification in vitro . Nucleic Acids Res. 18, 6409–6412 (1990).

    Article  CAS  Google Scholar 

  30. Breslauer, K.J., Frank, R., Blocker, H. & Marky, L.A. Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA 83, 3746–3750 (1986).

    Article  CAS  Google Scholar 

  31. Ning, Z., Cox, A.J. & Mullikin, J.C. SSAHA: a fast search method for large DNA databases. Genome Res. 11, 1725–1729 (2001).

    Article  CAS  Google Scholar 

  32. Singh-Gasson, S. et al. Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat. Biotechnol. 17, 974–978 (1999).

    Article  CAS  Google Scholar 

  33. Nuwaysir, E.F. et al. Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Genome Res. 12, 1749–1755 (2002).

    Article  CAS  Google Scholar 

  34. Kim, T.H. et al. A high-resolution map of active promoters in the human genome. Nature 436, 876–880 (2005).

    Article  CAS  Google Scholar 

  35. Selzer, R.R. et al. Analysis of chromosome breakpoints in neuroblastoma at sub-kilobase resolution using fine-tiling oligonucleotide array CGH. Genes Chromosomes Cancer 44, 305–319 (2005).

    Article  CAS  Google Scholar 

  36. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  CAS  Google Scholar 

  37. Osoegawa, K., de Jong, P.J., Frengen, E. & Ioannou, P.A. Construction of bacterial artificial chromosome (BAC/PAC) libraries. in Curr. Protoc. Mol. Biol. Vol. Suppl. 55. (eds. Ausubel, F.M., R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith & K. Struhl) 5.9.1–5.9.33 (John Wiley & Sons, Hoboken, New Jersey, 2001).

  38. Nolan, T., Hands, R.E. & Bustin, S.A. Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 1, 1559–1582 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institutes of Health to J.D. (HG003143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Job Dekker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dostie, J., Dekker, J. Mapping networks of physical interactions between genomic elements using 5C technology. Nat Protoc 2, 988–1002 (2007). https://doi.org/10.1038/nprot.2007.116

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.116

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing