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Childhood obesity jeopardizes a healthy future for our society’s 
children as it is associated with increased cardiovascular mor-
bidity and mortality later on in life. Endothelial dysfunction, 
the first step in the development of atherosclerosis, is already 
present in obese children and may well represent a targetable 
risk factor. Technological advancements in recent years have 
facilitated noninvasive measurements of endothelial homeo-
stasis in children. Thereby this topic ultimately starts to get the 
attention it deserves. In this paper, we aim to summarize the 
latest insights on endothelial dysfunction in childhood obesity. 
We discuss methodological advancements in peripheral endo-
thelial function measurement and newly identified diagnostic 
markers of vascular homeostasis. Finally, future challenges and 
perspectives are set forth on how to efficiently tackle the cata-
strophic rise in cardiovascular morbidity and mortality that will 
be inflicted on obese children if they are not treated optimally.

INTRODUCTION
The onset of atherosclerosis, dysfunction of the arterial endothe-
lium, starts early in life and is greatly accelerated in the setting of 
childhood obesity. Obesity therefore poses a serious health threat 
to children, increasing the child’s risk of developing clinically 
overt cardiovascular disease in adult life (1). Although the preva-
lence of childhood obesity increased dramatically the past three 
decades, rates now seem to have reached a plateau in most coun-
tries. Currently, about 20% of children and adolescents between 
12 and 19 y of age in the United States are obese (2).

Endothelial dysfunction is the primum movens in the 
pathogenesis of atherosclerosis, appearing long before clinical 
symptoms arise, and might qualify as a surrogate endpoint for 
cardiovascular disease risk. The endothelium’s primary role is 
the tight control of the blood vessel diameter. In response to 
stimuli for increased blood flow demand, endothelial nitric 
oxide synthase in endothelial cells is activated and produces 
nitric oxide, which diffuses into the vessel wall to fine-tune 
vasodilation (3). Although nitric oxide is considered a key 
regulator of endothelial function, several other factors are 
involved as well (4,5). The location of the endothelium close 

to the blood circulation, however, exposes the endothelial cells 
to many damaging factors. These factors cause harm to endo-
thelial cells leading to endothelial dysfunction, commonly 
defined as “an imbalance between vasodilating and vasocon-
stricting substances produced by (or acting on) endothelial 
cells” (6). Importantly, damage to endothelial cells might also 
upset vascular smooth cell function in obese children (7–9). 
Novel developments in the field have encouraged researchers 
to examine alterations in vascular endothelial function not 
only in adults but also in children and adolescents. Endothelial 
dysfunction was demonstrated in the major conduit arteries of 
obese children and is referred to as macrovascular endothelial 
dysfunction (10). Although endothelial dysfunction is con-
sidered a “systemic disorder,” dysfunction of small resistance 
vessels, microvascular endothelial dysfunction, precedes the 
development of macrovascular endothelial dysfunction (11).

This growing interest in endothelial homeostasis introduced 
novel laboratory methods for investigating the endothelium at 
a cellular level. Endothelial micro particles (EMP) (12,13) as 
well as endothelial progenitor cells (EPC) (14) and circulat-
ing angiogenic cells (CAC) (15) emerged as markers of respec-
tively endothelial damage and repair. All have been implicated 
in the process of childhood obesity–related endothelial dys-
function (16,17). Therefore, the combined assessment of these 
cell-based markers and endothelium vasodilatory function 
may represent a promising option to optimize the risk strati-
fication and the primary care management of obese children.

In this review, we aim to summarize the latest insights on 
endothelial dysfunction in obese children. We discuss the 
methodological advancements in endothelial function mea-
surement and new biomarkers of vascular homeostasis. 
Finally, we explore future challenges and perspectives for the 
treatment of childhood obesity.

NEW FACTORS INFLUENCING CHILDHOOD OBESITY–
RELATED ENDOTHELIAL DYSFUNCTION
In obese children, multiple cardiovascular risk factors are 
present, which all negatively affect endothelial function (18). 
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Endothelial dysfunction summarizes the cumulative burden 
of these risk facts and might therefore represent an excellent 
surrogate marker for early cardiovascular disease (Figure 1). 
Risk factors in obese children include not only classical cardio-
vascular risk factors such as hypertension (19) but also newly 
discovered cytokines and signaling molecules including micro 
RNA (miRNAs). The impact of these factors has been dem-
onstrated in clinical and fundamental studies, and below we 
discuss the latest data in this field.

Hypertension during adolescence (20) can lead to severe 
vascular endothelial dysfunction in adult life (21). In prepu-
bertal children, obesity is strongly associated with hyperten-
sion. Counterintuitive, however, obese prepubertal children 
demonstrate a better functional capacity of their endothelium 
than the normal-weight normotensive counterparts (22). 
Accordingly, young obese children apparently develop an early 
vascular adaptive response to increased blood flow demands. 
Radtke et al. (23) recently provided evidence in support of this 
theory. They performed a cold pressure test to measure the 
change in blood pressure in response to stress in children with-
out known cardiovascular risk factors. Children with a positive 
test, and thus at increased risk of hypertension, showed greater 
endothelial capacity. The concept that young obese children 
are able to elicit an adaptive response of their endothelium to 
stress may also explain why 6 mo of exercise training does not 
improve endothelium-dependent flow-mediated dilation of 
the brachial artery in this population (24), whereas multiple 
previous studies have demonstrated positive effects of training 
on endothelial status in (post-) pubertal children (25). In sum-
mary, the effects of hypertension on endothelial dysfunction 
are complex and are influenced by pubertal development.

Dyslipidemia is another potent factor that is involved in 
impaired endothelial function in obese children. Elevated LDL 
cholesterol is often seen in obese adults but is rarely observed 
in obese children (19). Therefore, the focus of attention has 
recently shifted toward HDL cholesterol. HDL cholesterol 

is associated with a reduction in cardiovascular risk in adult 
populations (26). Unexpectedly, pharmacological attempts to 
raise HDL cholesterol levels in adults did not establish a risk 
reduction in coronary events (27). HDL, however, is a complex 
lipoprotein containing more than 1,000 lipids and 70 proteins 
(28). This multifaceted composition may underlie the diversity 
of HDL’s actions, including its anti-oxidative and anti-inflam-
matory properties. Hereof, Matsuo et al. (29) showed that the 
function of HDL is impaired in obese children. In particular, 
HDL in the young obese is less capable of stimulating endo-
thelial nitric oxide synthase activity and thus endothelial func-
tion (30). Six months of exercise training facilitated a tendency 
toward the improvement of HDL function, for which the 
authors speculated that the training was not intensive enough 
to achieve statistical significance (29).

Recent progresses in the field further indicate that HDL is 
a major carrier of miRNAs (31). miRNA’s are small (20–25 
nucleotides) noncoding RNA molecules that regulate the 
expression of protein-coding genes and are emerging as new 
biomarkers and therapeutic targets. Uncovering miRNAs that 
specifically relate to first signs of endothelial maladaptation 
may allow an earlier identification of obese children who are at 
increased cardiovascular risk (31). Moreover, in adults exercise 
can thrive HDL to induce a more proangiogenic miRNA pro-
file in endothelial cells (32). Whether the latter is also true for 
children remains to be proven.

Both low cardiorespiratory fitness (33) and physical inac-
tivity (34) are independent predictors of cardiovascular mor-
bidity and mortality. While cardiorespiratory fitness can be 
objectively assessed by ergo spirometry, physical activity is 
recorded by using questionnaires and/or accelerometers (35). 
In young children (5 to 10 y old), physical activity strongly 
correlates with endothelial function (36). Surprisingly, no cor-
relation of physical (in)activity or cardiorespiratory fitness 
with endothelial function is observed in adolescents (mean 
age of 14.5 y) (37). Although adolescents demonstrate high 

Figure 1.  Determinants of obesity-related endothelial dysfunction in children. On the left, cardiovascular risk factors which can influence endothelial 
function in obese children are summarized. On the right, noninvasive techniques to assess macrovascular (FMD) and microvascular endothelial dysfunc-
tion (Endo-PAT) are shown.

Sleep apnea

Macrovascular
endothelial
dysfunction

Microvascular
endothelial
dysfunction

Psychological factors

Hypertension

Dyslipidemia

Adipokines

Insulin resistance

Inflammation

↓ HDL function

↓ Physical activity

↓ Fitness

832  Pediatric Research          Volume 79  |  Number 6  |  June 2016



Copyright © 2016 International Pediatric Research Foundation, Inc.

Obesity-related endothelial dysfunction         Review
cardiorespiratory fitness in the study of Radtke et al., only 16% 
of them actually adhered to the recommended 60 min of physi-
cal activity per day. Therefore, it could be possible that these 
adolescents did not perform enough physical activity to keep 
their endothelial function optimal, while cardiorespiratory fit-
ness was preserved. Vice versa, in young recreationally active 
men (25 ± 2 y), as little as 5 d of diminished physical activity 
negatively impacted macrovascular endothelial function in the 
study by Boyle et al. (38). Furthermore, whereas a high inten-
sity exercise bout increases endothelial function in normal-
weight young adults, this response is completely blunted in 
obese participants (39). However, the differentiation between 
cardiorespiratory fitness and physical activity still remains 
complex, and more research will be necessary to investigate 
their differential effects on childhood obesity–related endothe-
lial dysfunction.

Adipocytes secrete a vast array of cytokines called adipo-
kines and, as such, adipose tissue meets the criteria of an 
endocrine organ (40). In childhood obesity, hypertrophic 
adipose tissue is invaded by macrophages, resulting in the 
upregulation of adipocyte adhesion molecules. This process 
leads to the diapedesis of monocytes and initiates a vicious 
circle of adipogenesis and inflammation (41). Several adipo-
kines have a direct effect on endothelial function, including 
leptin and adiponectin (42,43). Chemerin, a novel adipo-
kine at the crossroad between inflammation and obesity, 
may possibly influence the vascular endothelium as well. In 
obese children, increased circulating levels of chemerin have 
been observed (44), closely correlating with the degree of 
endothelial dysfunction. Also, addition of chemerin to cul-
tured endothelial cells upregulated the expression of adhe-
sion molecules for white blood cells. Additionally, both 
childhood obesity and inflammation lead to oxidative stress 
(45–47), since they induce the generation of reactive oxygen 
species and lower the anti-oxidant capacity.

As in adults, sleep apnea in obese children is highly prev-
alent (48) and impairs endothelial function (49). The link 
between sleep apnea, childhood obesity, and inflammation 
was recently investigated by measuring circulating levels 
of pentraxin-3, a relatively new biomarker of cardiovascu-
lar risk (50). Plasma pentraxin-3 levels correlate positively 
with BMI and with the severity of obstructive sleep apnea 
syndrome in obese children. In addition, Kim et al. dem-
onstrated that pentraxin-3 correlates with the number of 
circulating EMP in obese children (51). More research on 
pentraxin-3 as a new biomarker in the setting of childhood 
obesity could be of interest.

Insulin resistance is common among obese children and ado-
lescents. Reciprocal relationships between insulin resistance 
and endothelial dysfunction cause a vicious cycle, leading to 
metabolic, renal, and cardiovascular diseases (52). Insulin is a 
potent vasodilator (53). In case of insulin resistance, however, 
endothelial cells are selectively resistant for these vasodilatory 
actions. Insulin will stimulate the production of endothelin-1, 
a potent vasoconstrictor (54). In healthy individuals, exoge-
nous endothelin-1 led to reduced peripheral insulin sensitivity 

(55). In summary, insulin resistance may lead to endothelial 
dysfunction and vice versa.

Psychological psychosocial distress is highly prevalent in 
obese children (56). In addition, scores for anger, depression, 
and anxiety are negatively correlated with endothelial function 
in healthy children (57). Mechanisms, however, are most likely 
of postnatal origin, since a recent large population study found 
no correlation between maternal stress during pregnancy and 
endothelial function in children at the age of 10 to 12 y (58). It 
remains to be examined, however, whether psychological traits 
impose an increase in the cardiovascular risk of obese children.

To conclude, the rapidly increasing prevalence of childhood 
obesity has clearly awakened the scientific community. Still, to 
prevent a catastrophic increase in the prevalence of cardiovas-
cular disease, we need to step up and improve our understand-
ing of the mechanisms underlying childhood obesity-related 
endothelial dysfunction. Novel noninvasive methods for the 
evaluation of endothelial function can now be easily applied in 
children, thus setting the scene for allowing thorough clinical 
and translational studies. In the following paragraphs, we dis-
cuss these technological advancements in methodology.

TECHNOLOGICAL ADVANCEMENTS IN OBESITY-
ASSOCIATED ENDOTHELIAL FUNCTION MEASUREMENT
More than 20 y ago, a first noninvasive method, called flow-
mediated dilation (FMD), was introduced to measure endothe-
lial function (59). More recently, peripheral arterial tonometry 
(Endo-PAT) was developed to overcome the user-dependent 
disadvantage of FMD (60). For Endo-PAT, a pneumatic probe is 
placed on both index fingers. Then, similar to the FMD method, 
a sphygmomanometer is insufflated to supra-systolic pressures 
forcing a transient occlusion of the brachial artery. The shear 
stress-induced dilation of the small resistance vessels will cause 
pressure differences, which are registered and expressed as pulse 
wave amplitudes. The software provided with the Endo-PAT 
system will then automatically calculate the reactive hyperemia 
index (RHI) as the ratio of the pulse wave amplitude starting 
90 s after occlusion, for 60 s, divided by the baseline pulse wave 
amplitude. Though, in contrast to FMD, assessment of endothe-
lium-dependent vasodilation is not possible.

In recent past, Chen et al. and Radtke et al. demonstrated that 
the time needed to reach maximal dilation (i.e., peak response) 
with the Endo-PAT device is more variable in children and 
adolescents than in adults (23,61). The Endo-PAT algorithm 
might not correctly account for physiological adaptations in 
childhood and puberty (62,63). Therefore, if RHI is used in 
children, the true peak dilation could be missed. To over-
come this hurdle, we recently proposed to use peak response 
instead of the automatically calculated RHI in children (64,65). 
Although Endo-PAT was initially set forth as an alternative 
technique for FMD, a large population-based study recently 
pointed out that micro- (measured with Endo-PAT) and mac-
rovascular (detected with FMD) endothelial dysfunctions can 
develop independently of each other (66). Microvascular endo-
thelial dysfunction would precede endothelial dysfunction at 
the macrovascular level in obese children (12). To conclude, 
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the analysis of Endo-PAT testing in children requires caution, 
and it seems more correct to use peak response instead of RHI. 
Further, the uncoupling of macrovascular from microvascular 
endothelial dysfunction urges the assessment of both Endo-
PAT and FMD measures in obese children. Cellular markers of 
endothelial damage and repair may add further to our knowl-
edge of the vascular endothelium in childhood obesity. These 
will be discussed in the following paragraphs.

CELL-DERIVED MARKERS OF ENDOTHELIAL DAMAGE AND 
REPAIR IN OBESE CHILDREN
The location of the endothelium close to the circulation 
exposes the endothelial cells to damaging factors such as 
lipids and inflammatory proteins. Upon this activation or 
following apoptosis, endothelial cells will shed small (100 
nm–1 µm) particles of the cell membrane into the circula-
tion, called EMP (67). These microparticles are covered with 
surface antigens from the parental endothelial cell, making 
quantification possible using specific flow cytometry markers. 
Interestingly, EMP also carry RNA (including microRNA), 
DNA, and proteins and can therefore act as delivery vehicles 
to target cells (68). In the largest study to date, involving 
844 adults without a history of cardiovascular disease, EMP 
counts strongly correlate with cardio-metabolic risk factors, 
in particular with dyslipidemia (69). Indeed in obese adults, 
numbers of EMP are increased and also negatively correlated 
with macrovascular endothelial function (70). Likewise, 
obese children have higher blood EMP than their normal-
weight counterparts (71). We recently demonstrated that 
CD31+/CD42b- EMP are important indicators of microvas-
cular endothelial health in obese children (65). The relation 
between EMP and endothelial function, however, might well 
be bidirectional (72). Evidence from in vitro by Agouni et al. 
(73) already demonstrated that EMP from adults with the 
metabolic syndrome have reduced endothelial nitric oxide 
production and directly influence the endothelium-depen-
dent vasorelaxation. Limits for blood sampling volumes in 
children, however, have so far hampered research on EMP 
functioning in pediatric populations.

Next to EMP as markers of endothelial damage, EPC 
emerged as markers of endothelial repair. The theory that lost 
endothelial cells are solely replaced by neighboring endothe-
lial cells has now been largely refuted. After endothelial injury, 
EPC are mobilized from the bone marrow into the circulation 
under the influence of several chemotactic factors (74). EPC 
migrate to and incorporate into sites of damaged endothelium 
(75). Obesity is a prominent predictor of low EPC mobiliza-
tion, and weight loss is associated with increased circulating 
EPC and improved macrovascular endothelial function (76). 
Remarkably, Jung et al. (16) reported an elevated level of cir-
culating EPC in obese children. Methodological issues, raised 
by the lack of assay standardization and phenotypic defini-
tion, could have accounted for this rather unexpected finding. 
Enumeration of EPC, defined as CD34+/KDR+/CD45dim/- 
cells, according to recent recommendations (77), shows that 
the EPC level in obese children is negatively correlated with 

BMI (65), which is in accordance with data obtained in adults 
(76). In addition, obese children have less EPC in their blood-
stream than normal-weight controls (65). Moreover, in analogy 
to high EMP, low circulating EPC turns out to be an indepen-
dent predictor of reduced peak response (65). Increased EMP 
and reduced EPC blood counts in obese children support the 
existence of an imbalance between endothelial damage and 
repair mechanisms in this population (Figure 2).

CAC are the most novel cellular players in vascular regener-
ation. CAC are the adherent mononuclear cells which emerge 
after a 4–7 d culture of peripheral blood mononuclear cells in 
endothelial cell medium using fibronectin-coated plates (77). 
They contribute to endothelial repair by attracting circulating 
EPC in the blood and by stimulating their integration into the 
injured endothelium via the secretion of angiogenic growth 
factors. Obese adults have reduced and dysfunctional CAC 
(78). In obese children, CAC are also functionally defective 
(79), thereby shifting the balance in these children even fur-
ther towards higher endothelial damage and reduced repair 
capacity (Figure 2).

Still, in contrast to CAC from obese adults, CAC of obese 
youngsters are not yet resistant to the proangiogenic effects of 
leptin. The adipokine leptin, mainly known for its role in regu-
lating human energy homeostasis and appetite (80), has several 
atherogenic, thrombotic, and angiogenic actions on cardio-
vascular homeostasis (81). In this regard, leptin enhances the 
migratory activity of CAC in normal-weight adults (82). 
In obese adults, leptin resistance of CAC can be defeated by 
weight loss (83). Interestingly, the migratory ability of CAC in 
normal-weight children cannot be improved any further upon 
stimulation with leptin, indicating that in normal-weight chil-
dren CAC function is likely at its maximum (79).

To conclude, new cellular markers of endothelial damage 
and repair may allow researchers to gain a greater insight into 
the endothelial biology of obese children. In vitro work now 
suggests that these markers do not merely reflect the status of 
the endothelium but also effectively contribute to the progres-
sion or reversion of endothelial dysfunction in pathological 
conditions. Study results relating to young obese children are 
discussed in the next paragraphs.

Figure 2.  Imbalance between endothelial damage and repair. The imbal-
ance between endothelial damage (higher counts of circulating EMP) and 
endothelial repair (lower numbers of EPC and impaired function of CAC) in 
childhood obesity–related endothelial dysfunction is displayed (b), while 
the balanced situation in normal-weight children is depicted as well (a).
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NEW INSIGHTS ON TREATMENT OF ENDOTHELIAL 
DYSFUNCTION
Endothelial dysfunction is traditionally regarded as a revers-
ible process. Weight loss by reducing caloric intake and/or 
increasing physical activity tackles multiple cardiovascular risk 
factors associated with endothelial dysfunction in obese chil-
dren (84). Besides the indirect effects, weight loss also directly 
influences the endothelium by stimulation of endothelial nitric 
oxide synthase (85). In obese children, a combination of diet 
and exercise training is able to improve macrovascular endo-
thelial function after as little as 6 to 8 wk (86,87) However, 
10 mo of supervised diet and exercise is needed to enhance 
microvascular endothelial function (88). Microvascular endo-
thelial dysfunction therefore seems much harder to tackle than 
macrovascular endothelial dysfunction. Its longer presence 
may well explain the discrepancy in time needed to overcome 
the endothelial malfunctioning and thus reduce the cardiovas-
cular risk.

Along with the improvement of microvascular endothe-
lial function, a differential recruitment of EPC and EMP is 
observed in obese children. In our recent work, obese children 
have a peak in the number of blood EPC after 5 mo of diet 
and exercise, whereas at 10 mo there is a significant drop in 
circulating EMP. At 10 mo, EPC levels returned to baseline. We 
hypothesize that the need for high EPC numbers was elimi-
nated since endothelial damage was significantly reduced. In a 
large cohort of primary school children, 1 y of exercise training 
on every school day led to a significant increase in the number 
of EPC (89). However, only 13% of these children were obese 
or overweight, setting limits for comparison. To our knowl-
edge, the effect of a diet plus exercise treatment on numbers 
of circulating EMP in obese children had not been described 
before. Interestingly, microparticles, including EMP, may 
either be viewed as beneficial or detrimental (73), and further 
information on EMP in obese children would therefore be of 
interest.

FUTURE CHALLENGES AND PERSPECTIVES
The current clinical guidelines to treat childhood obesity 
merely focus on weight stabilization (and thus reducing BMI by 
normal growth) in case of moderate obesity and weight reduc-
tion in case of severe obesity (90). Children are encouraged to 
reduce their time spent in sedentary behavior and to increase 
physical activity up to 60 min per day (91). These recommen-
dations are mainly based on epidemiological studies, in which 
reduced physical activity was clearly associated with increased 
incidence of obesity (39). The major goal of obesity therapy 
in children, however, should be aimed at reducing the long-
term risk of cardiovascular morbidity and mortality. For this 
purpose, longitudinal prospective clinical studies are needed 
with patient follow up for cardiovascular events to occur. This 
kind of research would be extremely costly and time consum-
ing. The emerging evidence that endothelial function qualifies 
as a clinically relevant surrogate endpoint may offer a solution 
to resolve this issue. We believe that thorough evaluation of the 

endothelial status in large-scale multicenter trials can create a 
setting enabling the further optimization of training protocols 
for obese children. One of these training modalities could be 
aerobic interval training, since data indicate that this type of 
training is superior in reversing endothelial dysfunction in 
children (92). Although the participation of children in clini-
cal studies raises several ethical concerns (93), we hope that 
researchers will continue the fight against childhood obesity.

CONCLUSIONS
In recent years, attention has shifted toward mechanisms of 
childhood obesity–related endothelial dysfunction after an ini-
tial period where all eyes were on obese adults. Determinants 
of childhood obesity–related endothelial dysfunction, cell 
based and biochemical, are now increasingly explored. In addi-
tion to extensive endothelial activation, dysfunction, and dam-
age, obese children have reduced endogenous vascular repair 
capacity. Endothelial dysfunction in the smaller resistance ves-
sels also seems harder to beat than large vessel endothelial dys-
function. Obviously, much more research is necessary to fully 
understand childhood obesity–related micro- and macrovas-
cular endothelial dysfunction in all its facets. We acknowledge 
that this requires a considerable investment, but the socioeco-
nomic burden of obese children not being treated optimally 
and growing up to obese adults developing associated comor-
bidities is even greater. This cost was recently estimated to be 
none less than $19,000 per person (94). Eventually, studies 
should not merely be initiated for scientific reasons, but more 
importantly, to safeguard the cardiovascular future of our soci-
ety’s obese children.
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