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Children of obese mothers are at increased risk of develop-
mental adversities. Maternal obesity is linked to an inflam-
matory in utero environment, which, in turn, is associated 
with neurodevelopmental impairments in the offspring. This 
is an integrated mechanism review of animal and human lit-
erature related to the hypothesis that maternal obesity causes 
maternal and fetal inflammation, and that this inflammation 
adversely affects the neurodevelopment of children. We pro-
pose integrative models in which several aspects of inflam-
mation are considered along the causative pathway linking 
maternal obesity with neurodevelopmental limitations.

The prevalence of obesity in 2011–2012 was 35% among adult 
women in the United States, with no significant change 

compared with 2002–2004 (1). The prevalence of obesity among 
adult women in Europe was 12% in 2010 (2). Nearly 30% (2.1 
billion people) of the world’s population today are estimated to 
be overweight or obese (3). This prevalence is projected to con-
tinue to increase, presenting a major public health epidemic in 
both the developing and developed world (4).

Just before pregnancy, almost two out of three women 
(64%) in the United States are either overweight or obese (5). 
Prepregnancy overweight and obesity are associated with 
gestational diabetes, pre-eclampsia, labor complications, and 
maternal hypertension during pregnancy (6). Maternal obe-
sity is also associated with chorioamnionitis and pregnancy-
related infection, such as group B streptococcal disease (7).

In addition to these potential risks to the mother, maternal 
obesity also may have life-long repercussions for her offspring. 
For example, children of obese mothers are prone to obesity 
(8,9), metabolic syndrome (10), neural tube defects (11), and 
cognitive impairment (12–16).

The causal pathway by which a mother’s obesity contributes 
to adverse neurodevelopmental outcomes among her offspring 
remains to be elucidated (12,17). Prepregnancy BMI studies 
focusing on pediatric outcomes are challenging because it is 
possible that characteristics and/or exposures associated with 

both prepregnancy BMI and neurodevelopmental outcomes 
influence the postnatal environment. In this review, we offer 
evidence from laboratory and human studies in support of 
the hypothesis that maternal obesity influences fetal, neona-
tal, and later developmental outcomes by increasing the risk of 
systemic and (18,19) and brain (20,21) inflammation.

We first address the reported associations between mater-
nal obesity and long-term neurodevelopment in offspring. 
In the subsequent sections, we outline an explanatory model 
(Figure  1) in which a series of inflammatory processes are 
hypothesized to account for neurodevelopmental limitations. 

INTEGRATED MECHANISM REVIEW
We used an integrated mechanism review method as outlined 
by Dammann and Gressens (22) to propose a hypothesis that 
explains the causal pathway for why children of obese mothers 
are at increased risk of developmental adversities. As suggested 
for integrated mechanism review, we first identified basic, clinical, 
and epidemiologic research on the neurodevelopment of children 
born to obese mothers. We then developed a graphic to illustrate 
possible causal models to explain the elevated risk of undesir-
able outcomes among the children of obese mothers. Finally, we 
reviewed available studies that could be used to support (or reject) 
each proposed incremental pathway of our explanatory model. 
The following sections summarize our findings.

Results of Maternal Obesity and Neuropsychological Outcomes
Children of mothers who were overweight or obese during 
pregnancy were at elevated risk of four major categories of neu-
rodevelopmental deficits, including cognitive and intelligence 
deficits, attention deficit hyperactivity disorder (ADHD), 
autism, and psychoses (Table 1). The most studied area was the 
relationship between the weight status of the mother before or 
during pregnancy and cognition/intelligence of the offspring.

Cognitive Deficits and Intelligence
By and large, children born to obese mothers have lower men-
tal development scores than their peers born to normal weight 
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women (14,16,23–33). Children whose mother was overweight 
near the time of the pregnancy tend to have mental develop-
ment scores that are intermediate between obese and healthy 
weight mothers (16). No association was found between 
maternal prepregnancy BMI and motor skills (25,27,30).

ADHD
Maternal prepregnancy overweight and obesity were associated 
with child inattention and related symptoms at the age of 5 y (34), 
and with ADHD symptoms in children aged 7–12 y (35), and 
9–17 y (36). The authors of a study of 7-y-old children that found 
a 2.8-fold increase in the prevalence of ADHD among children of 
obese compared to those of nonobese mothers attributed some of 
what they found to impaired executive function (37).

Autism
Two studies found that autistic children were more likely than 
their nonautistic peers to have a mother who was obese before 
the pregnancy (29), or had a prepregnancy weight ≥ 90 kg (38). 
Only one study showed a weak association between maternal 
obesity and ASD risk (39).

Psychoses
Of four studies that evaluated the relationship between mater-
nal BMI and the risk of schizophrenia in the offspring, two 
found that the adult children born to obese women were two- 
to threefold more likely to be given a diagnosis of schizophre-
nia than the adult offspring of normal weight women (40,41). 
Another reported a progressive increase in the risk of schizo-
phrenia in offspring was associated with each unit increase of 
maternal BMI (42). Only one of the four studies reported no 
relationship between maternal obesity and psychoses among 
their offspring. The BMI of mothers of adults with schizophre-
nia did not differ from the BMI of mothers of adults without 
schizophrenia (43). However, a review of the four studies 

raised the possibility that “the discrepant findings from one 
study could be attributable to sample characteristics and other 
factors” (44).

INTEGRATED EXPLANATORY MODEL
In Figure 1, we illustrate the possible interrelationships 
between maternal obesity (on the left) and neurodevelop-
mental deficits of the offspring (on the right). Arrows indicate 
proposed pathways between exposures and outcomes. The 
numbers with each arrow in the figure refer to the following 
subsections and provide the available evidence to support each 
link in the model.

Not all intermediate steps in the proposed pathways are 
addressed in the model. For example, section 7 (Maternal sys-
temic inflammation and fetal brain inflammation) appears to 
bypass the involvement of the uterus. We include such by-pass 
sections when the reports deal with an exposure (e.g., lipo-
polysaccharide administered into the peritoneal cavity) and 
an outcome (expression of the proinflammatory cytokines in 
the fetal rat brain), and do not report on, or discuss the likely 
intermediate steps.

1. Maternal Obesity and Maternal Systemic Inflammation
Obesity can contribute to chronic systemic inflammation 
(45,46), as can pregnancy (47,48). Beyond their many other 
functions, cytokines serve as signaling molecules between the 
immune and nervous systems (49). C-reactive protein is an 
acute phase protein that promotes further inflammation, while 
leptin is an adipokine associated not only with satiety and 
energy homeostasis, but also with inflammation (50–53). The 
systemic responses to pregnancy, including IL-6, C-reactive 
protein, and leptin, were exaggerated in women with prepreg-
nancy obesity (54–56). At 4 wk of gestation, obese women had 
higher levels of C-reactive protein compared to normal weight 
pregnant women (57,58).

Figure 1. Proposed mechanistic framework outlining inter-relationships between maternal obesity, inflammation, and neurodevelopmental deficits. 
Numbers along arrows correspond to numbers identifying sections in this article.
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Table 1. Studies reporting data on maternal obesity during pregnancy and offspring developmental outcomes
Author 
(reference 
number) Year Country N Age Test

Weeks of 
gestation Outcome

Cognitive deficits and intelligence
Kerstjens (23) 2013 The Netherlands 834 43–49 mo ASQ 32–36 Developmental delay:  

Prepregnancy obesity: OR 2.7 (1.4–5.5)
Casas (16) 2013 Spain, Greece Spain: 1866, 

Greece: 397
11–22 mo BSID >36 Cognitive development scores:  

Spain: β (95% CI) Ov vs. Nw −0.9 (−2.6, 0.9),  
Ob vs. Nw −2.7 (−5.4, −0.1);  
Greece: Ov vs. Nw 1.4 (−2.3, 5.1),  
Ob vs. Nw −3.7 (−8.5, 1.0)

Helderman (24) 2012 United States 921 2 y MDI <28 MDI < 55 score: Maternal BMI > 30;  
OR 2.0 (1.1, 3.5),  
MDI <55–69: Maternal BMI > 30; OR 1.3 (0.9, 2.3)

Hinkle (25) 2012 United States 6,850 2 y MDI, PDI ≥ 37 MDI score: β (95% CI) Ov vs. Nw −0.2 (−0.9, 0.5) 
Ob I vs. Nw −0.6 (−1.6, 0.5)  
Ob II and III vs. Nw −2.1 (−3.3–0.9),  
PDI score: β (95% CI) Ov vs. Nw 0.1 (−0.5, 0.8)  
Ob I vs. Nw 0.2 (−0.8, 1.3)  
Ob II and III vs. Nw −0.3 (−1.7–1.1)

Craig (26) 2013 United States Dataset A: 
3,961, Dataset 
B: 25,030

2 y, 8 y BSID-III, WISC-
III

≥ 36 BSID-III ≥1 score <85:  
Ob vs. non-ob OR 3.9 (1.4–11.3),  
WISC-III ≥1 score <85:  
Ob vs. non-ob OR 5.2 (1.5–18.2)

Neggers (27) 2003 United States 355 5.3 y GIA, GMS All GIA score: β (SE); P value  
Ov (BMI ≥ 26.1 to ≤29) vs. Nw (BMI ≥ 19.8 to ≤26): 
−1.1 (2.0) Ob (BMI > 29) vs. Nw: −4.7 (1.4),  
GMS: Ov (BMI ≥ 26.1 to ≤ 29) vs Nw (BMI ≥ 19.8 to 
≤26): −0.47 (2.6) Ob (BMI > 29) vs. Nw: −5.6 (1.8)

Tanda (14) 2013 United States 3412 60–83 mo PIAT 37 - 42 Reading recognition: Β (SE)  
Ov vs. Nw −0.8 (0.6), Ob vs. Nw -3.1 (0.8); 
Mathematics: Β (SE) Ov vs. Nw −0.8 (0.6), Ob vs. 
Nw −2.4 (0.8)

Heikura (28) 2008 Finland Cohort 1 
1966: 12,058, 
Cohort 2 
1986: 9,432

11.5 y ID >28 Severe intellectual disability (IQ < 50)  
Cohort 1: Ov vs. Nw OR 0.9 (0.5–1.6),  
Ob vs. Nw OR 1.0 (0.4 –2.5)  
Cohort 2: Ov vs. Nw OR 1.4 (0.6–3.1)  
Ob vs. Nw OR 2.6 (0.9–7.7);  
mild intellectual disability (IQ 50–70)  
Cohort 1: Ov vs. Nw OR 0.2 (0.2–1.6)  
Ob vs. Nw OR 0.5 (0.1–3.8)  
Cohort 2: Ov vs. Nw OR 0.7 (0.3–1.7),  
Ob vs. Nw OR 2.9 (1.3–6.1)

Krakowiak (29) 2012 United States 1,004 2–5 y SCQ All DD vs. TD OR 2.1 (1.2–3.6)
Hinkle (30) 2013 United States 5,200 57–85 mo BSID ≥ 37 BSID score: RR (95% CI)  

Ov vs. Nw 1.1 (0.8–1.3), Ob I vs. Nw 1.2 (0.9–1.7), 
Ob II and III vs. Nw 1.7 (1.3–2.2)

Huang (31) 2014 United States 30,212 7 y WISC ≥ 37 Ob vs. Nw. β = −2.0 (−3.5–0.5)
Basatemur (15) 2013 United Kingdom 19,517 5 and 7 y BAS-II All Age 5 (Β =−0.08, P ≤ 0.01); Age 7: (Β = −0.17, 

P ≤ 0.001). A 10-point increase in maternal 
prepregnancy BMI corresponds to a decrease in 
cognitive performance of 1.5 (~1/10th of an SD)

Gage (32) 2013 United Kingdom 4 y: 5,832 8 
y: 5,191 16 y: 
7,339

4, 8, and 16 y 4 y: SEA 8 y: 
WISC 16; SFE

≥ 37 Mean SD difference per 1 kg (95% CI)  
SEA: −0.004 (−0.005 to −0.002)  
WISC: −0.004 (−0.006 to −0.002)  
OR (95% CI) Adequate final examination results: 
0.99 (0.98–0.99)

Bliddal (33) 2014 Denmark 1,783 5 y WPPSI-R All Β IQ point (95%CI) for every unit increase iin BMI 
−0.40 (−0.64 to −0.17)

ADHD
Rodriguez (34) 2010 Sweden 1,714 5 y DSM-IV ADHD ≥ 37 Ov vs. Nw OR 2.0 (1.2–3.4),  

Ob vs. Nw OR 2.1 (1.2–4.8)

Table 1. Continued
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2.  Maternal Systemic Inflammation and Long-Term 
Neurodevelopmental Deficits

Children of women who had high circulating levels of TNF-α 
(59) and IL-8 (60) during pregnancy were at increased risk of 
schizophrenia. Other inflammatory phenomena during fetal 
development might also contribute to the occurrence of autism 
(61). In a mouse model, systemic maternal inflammation with 
lipopolysaccharide combined with neonatal  hyperoxic expo-
sure appears to decrease oligodendrocyte numbers in the 
cerebral cortex and hippocampus in adulthood (62).

3. Maternal Obesity and Intrauterine Inflammation 
Compared to the placentas of their lean peers, the placentas 
of obese women tend to have increased CD68+ and CD14+ 
cells, along with increased expression of the proinflamma-
tory cytokines IL-1, TNF-α, IL-6, and C-reactive protein (54). 
Histologic inflammation was much more common in the pla-
centas of obese women than in the placentas of normal-weight 
women (63). The higher a pregnant woman’s BMI, the higher 
her blood concentrations of cytokines and activation of pla-
cental p38-MAPK and STAT3 inflammatory pathways acti-
vated by MCP-1 and TNF-α (64).

4. Maternal Obesity and Systemic Inflammation in the Offspring
Preterm newborns of overweight and obese women were more 
likely than their peers born to women with lower BMIs to have 
systemic inflammation, but only among those delivered for 
maternal or fetal indications (65). The association was more 
prominent for protein elevations observed on two or more days 
than for elevations present on 1 d only, especially among the 
infants of overweight women. These findings suggest that moth-
er’s prepregnancy overweight or obesity can contribute to a pro-
longed proinflammatory state in very preterm infants delivered 
for maternal or fetal indications.

At the age of 12 y, children born to obese mothers tended 
to have higher blood levels of C-reactive protein, but not 
IL-6, TNF-α, or adiponectin, than children born to nonobese 
mothers (19). In a study of adults (mean age 57 y), those with 
two obese parents (vs. none or one parent) had higher lev-
els of C-reactive protein, but not IL-6, TNF, or adiponectin 
(18). Since the children of obese adults are at increased risk 
of becoming obese themselves (66), these reports support 
the hypothesis that maternal obesity increases susceptibil-
ity to an inflammatory state in the offspring perhaps even 
before the onset of obesity, suggesting that inflammation may 

Rodriguez (35) 2008 Sweden, 
Denmark, Finland

14,519 7–8 y SDQ: Sweden 
Denmark: RB2

All Ov vs. Nw OR 1.4 (1.1–1.8),  
Ob vs. Nw OR 1.9 (1.1–3.2)

Buss (37) 2012 United States 174 7 y CBC Go/no-go 
task (executive 
function)

≥ 35 Ob (link partially mediated by executive function): 
F = 4.80, P = 0.03. Cohen’s d = 0.54, β = 0.18.  
Ob: F = 8.37, P = 0.004. Cohen’s d = 0.62.  
NS for Ov

Chen (36) 2014 Sweden 673,632 9–17 y ICD-10/DSM-
IV

All HR overweight = 1.12, 95% CI 1.18–1.27  
HR obesity = 1.64, 95% CI 1.57–1.73

Autism
Krakowiak (29) 2012 United States 1,004 2–5 y ADOS All ASD vs. TD OR 1.7 (1.1–2.6)
Dodds (38) 2011 Canada 129,733 1–17 y ICD-9 or  

ICD-10
≥ 20 Prepregnancy weight ≥ 90 kg:  

RR (95% CI); 1.6 (1.3–2.0)
Suren (39) 2014 Norway 92,909 4–13 y DSM-IV All OR (95% CI) for ASD in children of obese mothers 

1.34 (0.84–2.12)
Psychosis
Jones (43) 1998 Finland 10,578 28 y DSM-III-R 38–42 Maternal prepregnancy BMI of offspring with 

schizophrenia (N = 76): mean (SD); 23.6 (4.3); 
Maternal prepregnancy BMI of offspring of 
unaffected population (N = 10,502): 23.1 (3.2)

Schaefer (40) 2000 United States 6,633 30–38 DIGS All RR (95% CI) for schizophrenia  
Ov (BMI 27–29.9) vs. Nw (BMI 20–26.9):  
1.8 (0.8–4.3), Ob (BMI ≥ 30) vs. Nw: 2.9 (1.3–6.6)

Wahlbeck (41) 2001 Finland 6,509 63–72 HDR All OR (95% CI) for schizophrenia  
BMI ≤ 24 3.8 (1.4–9.9), BMI ≤ 26 3.0 (1.2–7.8),  
BMI ≤ 28 3.1 (1.2–7.9), BMI ≤ 30 3.1 (1.1–8.4)

Kawai (42) 2004 Japan 336 19 DSM-IV All OR for schizophrenia 1.2 (1.0–1.41)
aDOs, autism diagnostic observation schedule; asD, autism spectrum disorder; asQ, ages and stages Questionnaire; Bas-II, British ability scales, second edition; BsID, The Bayley 
scales of Infant Development; CBC, child behavior checklist; CI, confidence interval; DD, developmental delays; DIGs, The Diagnostic Interview for genetic studies; DsM-IV, Diagnostic 
and statistical Manual of Mental Disorders, Fourth edition; GIa, General Intellecutal ability score; GMs, Gross motor score; hDR, hospital Discharge Register; ICD, International statistical 
Classification of Diseases and Related health Problems; ID, intellectual disability (IQ < 70) based on standardized psychometric tests administered by a psychologist; MDI, Bayley Mental 
Developmental Index; Ns, nonsignificant; Nw, normal weight (BMI 18.5–24.9); Ob, obese (BMI ≥ 30); Ob I, BMI 30–34.9; Ob II and III = BMI ≥ 35; Ov, overweight (BMI 25–29.9); PIaT, 
Peabody Individual achievement Test; PDI, Bayley psychomotor development index; RB2, Rutter scale; sCQ, social Communication Questionniare; sea, school entry assessment score; 
sFe, school Final examination results; sDQ, strengths and Difficulties Questionnaire; TD, typical development; WIsC, Wechsler Intelligence scale for Children; WPPsI-R, Wechsler Primary 
and Preschool scales of Intelligence.

Table 1. Continued
Author 
(reference 
number) Year Country N Age Test

Weeks of 
gestation Outcome
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be a precursor to the development of obesity rather than a 
consequence. 

5. Maternal Obesity and Neuroinflammation in the Offspring
In a rat model, maternal high-fat-diet consumption (a corre-
late/contributor to maternal obesity) appears to sensitize off-
spring to the brain inflammation effects of their own high fat 
diet (67). These effects include increased reactivity of astrocytes 
and microglia, as well as increased levels of IL-6 and impaired 
water maze performance. Proinflammatory cytokines, includ-
ing IL-1β and IL-1receptor 1, as well as markers of microg-
lia activation, were upregulated in the hypothalamus of fetal 
macaques whose mothers received a high-fat-diet during preg-
nancy (68). The 90-d-old offspring of rats fed hydrogenated veg-
etable trans-fats, had increased IL-6, TNF-α, and IL1-β levels in 
their hypothalamus, compared to rats born to dams fed stan-
dard chow (69). Offspring of dams fed a high-saturated-fat or 
a high-trans-fat diet tended to have more microglial activation 
markers, TLR4 mRNA expression, and higher IL-1β levels in 
the hippocampus at birth compared to offspring of control-fed 
dams (70). The pups also displayed impaired spatial learning. 

6. Maternal Obesity and Fetal/Neonatal Brain Damage
Four studies evaluated the relationship between maternal 
obesity and cerebral palsy. One study found that children of 
overweight and obese mothers had a 3.5-fold increased risk of 
cerebral palsy (71). Another study reported that maternal obe-
sity was associated with a 30% increased risk of having a child 
with cerebral palsy. This risk was even higher among infants 
born to a morbidly-obese mother (72). Two studies found no 
association between maternal weight and cerebral palsy (73,74).

In a rat model, maternal obesity during pregnancy is associ-
ated with diminished proliferation and neuronal maturation of 
stem-like cells in the cerebral cortex of the pups’ brains, possi-
bly resulting in impaired neurodevelopment at a later age (75). 
At postnatal day 21, the hypothalamic tissue of pups born to 
high-fat-diet dams shows upregulation of the toll-like receptor 
4 (TLR4) signaling cascade, as well as increased phosphoryla-
tion of c-Jun N-terminal kinase 1 (JNK1) and IκB kinase-β 
(IKKβ) (76). Although murine responses to inflammatory 
stresses do not correlate well with human responses (77), acti-
vation of TLR4, JNK, and IKKβ can promote the synthesis and 
release of proinflammatory cytokines (78–80).

7.  Maternal Systemic Inflammation and Fetal/Neonatal Brain 
Inflammation

When injected into the peritoneal cavity of pregnant rodents, 
lipopolysaccharide, an endotoxin synthesized by Gram-
negative bacteria, increased the expression of TNF-α and IL-1β 
mRNA, in the fetal rat brain within hours, and promoted the 
presence of glial fibrillary acidic protein-positive astrocytes in 
the brain accompanied by decreased myelin basic protein (81).

8. Intrauterine Inflammation and Fetal/Neonatal Brain Damage
Placenta inflammation (chorioamnionitis) can induce a sys-
temic fetal inflammatory response that contributes to white 

matter injury in the fetal brain (82,83). Inflammation in the 
placenta is also associated with neonatal brain damage (84–86).  
The inflammation signal, likely transmitted across the blood–
brain barrier, initiates a neuroinflammatory response that has 
been offered as an explanation for later neurodevelopmental 
complications including cerebral palsy, autism, schizophre-
nia, and cognitive impairments (82,87,88). The authors of 
a review that found no support for an association between 
chorioamnionitis and central nervous system impairment in 
humans born preterm raised the possibility “that inflamma-
tion enhances maturation of the preterm infant and therefore 
has protective effects balancing its potential harmful effects” 
(89). Preconditioning might also be invoked to explain some 
of these inconsistent findings (v.i., 5.1 Systemic inflammation, 
preconditioning and sensitization).

9.  Intrauterine Inflammation and Fetal/Neonatal Systemic 
Inflammation

Preterm newborns whose umbilical cord was inflamed (funisi-
tis) tended to have higher blood concentrations of inflam-
mation-related proteins, including C-reactive protein, MPO, 
IL1β, IL8, TNF-α, ICAM3, and MMP on postnatal day 7 than 
their peers without funisitis (90).

10. Intrauterine Inflammation and Neurodevelopmental Deficits
Brain damage in both preterm and term mice following intra-
uterine inflammation is accompanied by increased TNF-α 
expression and alterations of other gene pathways in the brain 
thought to influence neurobehavioral, motor, and psychosocial 
behavior (91). Placenta inflammation is also associated with 
a decreased number of dendritic processes in the offspring’s 
brain, resulting in impaired learning and memory (91,92). 
Additionally, intrauterine inflammation in pregnant sheep 
resulted in microglial activation and macrophage infiltration 
in the fetal brain (93). Among humans born before the 28th 
week of gestation, placenta inflammation and the presence of 
microorganisms in the placenta were not associated with low 
Bayley Scales Mental Development Index scores at the age of 
2 y (24).

11.  Fetal/Neonatal Brain Inflammation and Fetal/Neonatal Brain 
Damage

Experimental and epidemiological studies document that peri-
natal inflammation can be a risk factor for abnormalities in 
brain structure and function (61,85,88,94). Cytokines such as 
TNF-α released during intrauterine inflammation are a possible 
cause of brain damage observed in animal studies linking pre-
term birth and periventricular white matter damage (61,85,94). 
Five mechanisms of cytokine-induced brain injury have been 
proposed (95). The first mechanism is the direct effect of cyto-
kines (IL-6) on the cerebral circulation (96). Second, inflamma-
tion promotes coagulation which in turn can increase the risk of 
brain damage via vessel obstruction (90) or enhanced inflam-
mation (97,98). Third, activated microglia can cause direct toxic 
effects on oligodendrocytes and myelin, in part, via microglial 
production of cytokines (99), which leads to neuronal loss and 
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impaired neuronal guidance (99,100), as well as inhibition of 
oligodendrocyte maturation (101). Fourth, the activation of 
microglia leads to production of free radicals, which contrib-
ute to oligodendrocyte death via oxidative stress (99,102). Fifth, 
inflammation can promote excitotoxic mechanisms resulting in 
damage to both neurons and oligodendrocytes (103). All of these 
mechanisms are enhanced by the increased permeability of the 
developing blood–brain barrier that has been documented fol-
lowing intraperitoneal injection of lipopolysaccharide (104).

12.  Fetal/Neonatal Brain Damage and Fetal/Neonatal Systemic 
Inflammation

The systemic inflammation that follows brain damage has two 
explanations (105). One postulates that what is seen in the 
blood is merely persistence of the inflammation that caused 
the brain damage. Another postulates that what is seen in the 
blood is the “spill over” of the inflammation in the brain. What 
is impressive is how long the local and systemic inflammation 
can continue (106).

13.  Fetal/Neonatal Systemic Inflammation and Fetal/Neonatal 
Brain Damage

Among infants born before 28 wk gestation, elevated levels 
of inflammation-related proteins in blood collected on both 
postnatal days 7 and 14 were associated with ventriculomeg-
aly on an ultrasound scan of the brain when the very preterm 
newborn was in the intensive care nursery (107). Because the 
ventriculomegaly is not accompanied by macrocephaly, the 
ventricular enlargement is usually attributed to processes that 
lead to hydrocephalus ex vacuo.

14.  Fetal/Neonatal Brain Inflammation and Clinical 
Neurodevelopmental Deficits

Rats that have increased reactivity of astrocytes and microglia, 
as well as increased levels of IL-6 in the brain, are more likely 
than others to have impaired retention of what they learned in 
a water maze (67). Compared to control rat pups, those with 
elevated IL-1β levels in the hippocampus at birth displayed 
impaired spatial learning (70).

15.  Fetal/Neonatal Brain Damage and 
Neurodevelopmental Deficits

Fetal brain damage is linked with neurodevelopmental deficits 
in early childhood (108). Reductions and other modifications 
in total and regional volume of the cerebellum, as well as cen-
tral and occipital regions of the cerebrum at term-equivalent 
age predict neurodevelopmental impairment in early child-
hood (109). Indicators of cerebral white matter damage also 
convey information about heightened risk of developmental 
disorders (110–112).

16.  Fetal/Neonatal Systemic Inflammation and 
Neurodevelopmental Deficits

Newborn mice injected with IL-1β twice-daily over 5 d, had 
later memory deficits (113). Among infants born before 32 wk 
gestation, those who had elevated levels of proinflammatory 

and modulatory cytokines in blood obtained during the first 72 
postnatal hours were at increased risk of cerebral palsy and less 
severe motor limitations at the age of 2 y (114). Among infants 
born before 28 wk gestation, elevated levels of inflammation-
related proteins in blood collected on both postnatal days 7 and 
14 were associated with impaired mental and motor develop-
ment (115) as well as microcephaly (116) at the age of 2 y.

OTHER MECHANISMS EXPLAINING LINK WITH 
NEURODEVELOPMENTAL OUTCOMES
Systemic Inflammation, Preconditioning, and Sensitization
Exposing the brain of a fetus to a subdamaging stimulus can 
protect against a subsequent insult (117,118). This phenome-
non has been given two names, preconditioning, and tolerance. 
The same type of subdamaging stimulus can also sensitize the 
perinatal brain to a subsequent subdamaging insult (119,120). 
Among the characteristics of the subdamaging exposure that 
influence whether the result is preconditioning (tolerance) 
or sensitization are duration of the interval between first and 
second exposures (120) and postnatal age (121). The mecha-
nisms that mediate preconditioning mechanisms in the imma-
ture brain likely differ from those observed in the adult (122). 
Figure 1 shows that maternal obesity associated with the 
increased risk of brain damage is linked to systemic inflam-
mation. Due to this systemic inflammation, the preterm new-
born is exposed to subdamaging stimuli within a narrow time 
range, resulting in greater injury explaining the higher risk for 
adverse neurodevelopmental outcomes in these children.

Confounding Factors
It is possible that characteristics and/or exposures associated 
with both maternal obesity and systemic inflammation, and 
not the obesity per se, explain the links with neurodevelop-
mental outcomes. One of these confounding factors might be 
maternal distress, as obesity has been related to mental health 
problems, which have been linked to developmental limita-
tions (123).

In a study that adjusted for maternal stress and depression 
symptoms during and after pregnancy, the association between 
prenatal maternal obesity and ADHD symptoms and emo-
tional problems did not change (34). This suggests that mater-
nal obesity and maternal distress may possibly act through 
separate mechanisms influencing fetal brain development.

Studies of the relationship between maternal obesity and the 
child’s development need to address the potential confounding 
due to variables that are related to both the mother’s obesity and 
her child’s development. For example, obese women and their 
families are more likely than others to have low socioeconomic 
status (124), micronutrient deficiencies (125), emotional dis-
tress (126,127), child behavior problems (36,42), and mental 
health dysfunctions in general (128). Another confounder of 
maternal obesity is paternal obesity, which has been associated 
with autistic disorder and Asperger (39).

It is also possible that maternal obesity increases the risk of 
neurodevelopmental limitations in the offspring via epigenetic 
phenomena (129–132).
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CONCLUSION
We offer support for the claim that the contribution of mater-
nal obesity to adverse brain development is achieved in part via 
inflammatory phenomena. The majority of data delineating the 
role of systemic inflammation in this association included ani-
mal and basic research studies. Therefore, studies of humans 
are needed that follow offspring from infancy into adulthood 
measuring their neurodevelopment in cognition and mental ill-
nesses, as well as inflammatory phenomena. With these studies, 
the full impact of being exposed to maternal obesity in utero 
can be better understood. Attempts to better control maternal 
obesity could lead to important benefits for the cognitive and 
psychiatric functioning of offspring. The exact mechanisms 
remain unknown. We, however, offer a model with several 
pathways with support for each component of these pathways.
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