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ABSTRACT: Changes in microcirculation have been recognized as
central to many disease processes. The aim of this study was to
evaluate factors, which influence the microcirculation of the skin
during the first month of life in premature infants. Red blood cell
(RBC) velocity, vessel diameter, and functional small vessel density
(FSVD) were measured daily for the first 30 d on the upper arm in
preterm infants with gestational age �30 wk. Orthogonal polariza-
tion spectral (OPS) images were analyzed off-line with the Capi-
Scope-Image program. In 25 infants, FSVD decreased significantly
from week 1 (mean � SD 236 � 33 cm/cm2) to week 4 (207 � 30
cm/cm2) and correlated directly with Hb levels and incubator tem-
perature. Vessel diameters and RBC velocity did not change signif-
icantly, nor did clinical parameters such as blood pressure, heart rate
or body temperature. Microvascular parameters were not dependent
on gestational or postnatal age. The microcirculation of the skin
might be an easily accessible window to obtain better understanding
of circulatory changes in the postnatal period. Our data are essential
as basis for further studies in this field. Hb levels and possible
incubator temperatures have a substantial influence on functional
small vessel density and therefore need to be taken in account.
(Pediatr Res 64: 567–571, 2008)

Disturbances of the microcirculation play a key role in
many disease states (1–4). The recent development of

new technologies has helped to investigate these changes in
adult patients with sepsis (5–7). Previous studies have shown
that parameters of microcirculation such as microvessel diam-
eter, red blood cell velocity, and functional small vessel
density (FSVD) can be measured in the skin of term and
preterm infants by Orthogonal Polarization Spectral (OPS)
imaging in the first week of life (8) and that FSVD increases
after elective blood transfusion in anemic neonates (9). The
microcirculation of the skin plays an important role in main-
taining a constant body temperature and in regulating the fluid
balance (10,11). Adequate function of the microcirculation is
a prerequisite for tissue nutrition and oxygen supply (12). The
microcirculation of the skin in neonates differs in several
aspects from that of an adult. The regular architecture has been
found to be poorly developed in the newborn (13). At birth,
the skin shows a disorderly capillary network and no papillary
loops in almost all areas, except the palms, soles, and nail

folds. The skin is richly supplied by a dense subepidermal
plexus demonstrating relatively little regional variation (14).

Functional capillary density (FCD) is one of the parameters
that delineate the microcirculation. FCD is defined as the
length of red cell-perfused capillaries per observation area and
is given as cm/cm2. FCD has been used as an indicator of the
quality of tissue perfusion (15). In neonates capillary vessels,
arterioles, and venules cannot clearly be differentiated in the
OPS images, so that the expression FSVD is used.

The aim of the study was to determine whether tissue perfu-
sion can be monitored reliably by OPS imaging in the premature
infant in the first month of life and to see if very low gestational
age or postnatal age have any influence on the imaging.

METHODS

Imaging. OPS imaging produces high-contrast microvascular images that
are obtained from the absorption of light (548 nm) by the Hb in the blood
without the use of fluorescent dyes. A virtual light source is created at a depth
of 1 mm within the tissue using special optics. The reflected light yields an
image of the illuminated vessel in negative contrast with a resolution of 1
pixel � 1 �m. Only vessels perfused with red blood cells can be seen. The
method has been validated for quantitative measurements of microcirculatory
parameters in an animal model against intravital fluorescence microscopy.
The use of OPS imaging in humans is possible without side effects (16,17).

Calculation of vessel diameter, red blood cell velocity and functional
small vessel density. Images were created using the CytoscanTM A/R, stored
on videotape and analyzed off-line. Vessel diameter (Diam), red blood cell
velocity (RBC vel), and FSVD were assessed with the CapiScope-Image
program. The best video sequence with the least movement artifacts for at
least 10 s was selected for each day and Diam and RBC vel were measured
in 3 to 5 vessels per observation area and FSVD was calculated.

To measure the diameter, a vessel is selected from the image on the video
screen and a line is placed in the vessel. The computer calculates the diameter
from 1 pixel perpendicular lines placed over the whole length of the drawn
line, based on the gray level change. RBC vel is measured using a spatial
correlation technique, which requires a 10-s video sequence in which the
tissue reveals little movement. A line is drawn along the vessel and the image
of the vessel is projected onto a 1 pixel thick line. The gray profile along the
line is taken for each field every 1/50th of a second. The comparison is
performed by calculating the correlation coefficient for every possible shift of
the previous gray level profile relative to the new profile. The shift, which
produces the highest correlation, indicates the distance that the pattern
traveled between the two gray level profile measurements. Since the time
lapse between the two gray level profiles is known, the velocity can be
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calculated. Vessel density is defined as the length of RBC-perfused vessels
per observation unit area and is given as cm/cm2. For this article, the
expression “vessel density” refers to perfused vessels (FSVD). In neonates
due to the small size of vessels, arterioles, capillaries, and post capillary
venules cannot be clearly distinguished, so calculations were done in vessels
with diameters ranging from 6 to 24 �m (CapiScope: www.kktechnology.com/
help/capiscope.html).

Quantitative measurement of RBC vel, FSVD and Diam using OPS
imaging all have been validated against intravital microscopy in the hamster
dorsal skin fold model, the rat liver and human sublingual tissue (18,19). The
new CapiScope software was validated against the previously used analysis
system Cap Image (20).

Subjects. The study was approved by the ethics committee of the medical
faculty of Ludwig-Maximilian University Munich. Parental consent was
sought before measurements. OPS imaging was performed from day 3 to day
30 of life in preterm infants with a gestational age �30 wk. Premature infants
were nursed in incubators at ambient temperature.

Measurements were attempted every day at the same time and started when
the infants settled down. The recording was done over 5 to 30 min to obtain
as many sequences as possible of high quality with duration of at least 10 s.
The probe was placed in the incubator next to the upper arm near the axilla
with the least possible contact to avoid pressure against the skin. In our
previous studies, we have found that the best images were obtained from the
skin of the inner upper arm. This area of the skin is less covered with lanugo
hair, which may interfere with the imaging, and is sparsely affected by
movement artifacts e.g., from breathing (8). Lubricating the skin with normal
saline to increase the contact surface of skin and probe improved the imaging,
in particular concerning sharpness and contrast.

Blood pressure, heart rate, incubator, body core and skin temperature were
recorded at the time of measurement and Hb levels were measured daily.

To see if very low gestational age influences microcirculatory parameters
we compared the most “mature” infants with a gestational age �28 wk with
the least mature infants with a gestational age �26 wk.

Statistics. Data are presented as mean for parametric data and as median
for nonparametric data and 95% confidence interval (CI). Data were analyzed
using repeated measures ANOVA followed by the paired Student t test for
comparison within the group and the unpaired Student t test for comparison
between preterm infants �26-wk gestational age and preterm infants �28-wk
gestational age. The Mann-Whitney nonparametric test was used for nonpara-
metric data. For correlation a Spearman rank order correlation and a linear
regression (Pearson) was applied. The level of significance was set at p � 0.05
and by a repeated t test at p � 0.01. All calculations were done with GraphPad
Prism 4.0 for Windows XP (GraphPad Software Inc, San Diego CA, 2003).

RESULTS

We were able to obtained images for the first 30 d from 25
preterm infants (median [95% CI]: gestational age of 28
[26.7–28.4] wk; birth weight 900 [808–993] g). Clinical data
of the infants are shown in Table 1. Six infants received
packed red blood cell transfusion during the study period at a
median age of 21 d. To calculate changes over time, results
from 3 d were pooled for each week (days 6–8 for week 1,
days 13–15 for week 2, days 20–22 for week 3 and days
27–29 for week 4). FSVD decreased significantly from the
first week to the fourth week (Table 2, Fig. 1). FSVD corre-
lated directly with Hb levels (r � 0.76 with 98% CI [0.54–
0.86], p � 0.0001) (Fig. 2). There was an inverse correlation

between FSVD and heart rate (r � �0.62 with a 95% CI
[�0.81 to �0.32], p � 0.001) and systolic blood pressure (r �
�0.78 with a 95% CI [�0.78 to �0.24], p � 0.0021). FSVD
did not correlate with body temperature or skin temperature at
the area of measurement but with incubator temperature (r �
0.87 with 98% CI [0.74–0.94], p � 0.0001) (Fig. 2). Vessel
diameter ranged from 7 to 24 �m, RBC vel from 172 to 727
�m/s with no significant change during the first 30 d of life.

Figure 1. Correlation of Hb with FSVD in 25 preterm infants. Hb levels
(A, ---), incubator temperature (B, . . .) and FSVD (—) decreased significantly
during the first month of life. Incubator temperature decreased linearly
whereas Hb levels displayed “peaks” due transfusions. The curve for FSVD
showed similar peaks.

Table 2. Functional small vessel density (FSVD), red blood cell
velocity (RBC vel), and vessel diameter (Diam) [mean � SD and

95 % confidence interval] for the 25 preterm infants

Wk 1 Wk 2 Wk 3 Wk 4

FSVD (cm/cm²) 236 � 33 219 � 33 212 � 30 207* � 30
219–254 205–234 198–225 191–223

RBC vel (�m/s) 344 � 84 338 � 60 314 � 65 314 � 54
299–388 312–364 284–343 284–344

Diam (�m) 14.6 � 2.0 14.4 � 2.4 13.8 � 2.7 14.2 � 1.3
13.5–15.6 13.4–15.5 12.6–15.0 13.5–14.9

* p � 0.0028 week 1 vs week 4 (paired Student t test).

Table 1. Clinical data of the 25 preterm infants as median (95% confidence interval)

Wk 1 Wk 2 Wk 3 Wk 4

Weight (g) 836 (695–976) 942 (843–1041) 1048 (912–1185) 1140 (964–1317)
Systolic BP (mm Hg) 53 (46–59) 57 (53–60) 59 (54–63) 58 (53–63)
Diastolic BP (mm Hg) 30 (25–35) 35 (32–39) 33 (31–36) 34 (29–38)
MAP (mm Hg) 39 (34–43) 43 (40–47) 41 (38–44) 42 (38–46)
Heart rate (beats/min) 151 (141–160) 163 (158–169) 162 (157–167) 165 (159–170)
Hemoglobin (g/dl) 13.6 (11.8–15.4) 11.0 (10.3–11.6) 9.9 (9.2–10.6) 10.3 (9.2–11.3)
Infant temperature (C°) 37 (36.8–37.2) 36.9 (36.8–37.0) 36.9 (36.7–37.0) 36.9 (36.7–37.1)
Incubator temperature (C°) 34.2 (33.1–35.3) 32.5 (31.8–33.2) 31 (30.4–31.5) 30.3 (29.8–30.8)
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RBC vel correlated with Hb levels (r � 0.5 with a 95% CI
[0.14–0.74], p � 0.0083) and inversely with mean systolic
blood pressure (r � �0.6 with a 95% CI [�0.8 to �0.29], p �
0.0009). Clinical variables, such as blood pressure, heart rate
or body temperature did not change significantly. Hb levels
decreased significantly over time (p � 0.0001). Gestational
age had no influence on microcirculatory parameters.

DISCUSSION

We have shown that during the first month of life gesta-
tional or postnatal age do not influence microcirculatory pa-
rameters of the skin in preterm infants, but FSVD and RBC
vel correlate with Hb levels. Using the same instrumentation
sublingually, Nadeau and Groner observed a decline in vessel
density in three severely anemic adults. They used the OPS
imaging to calculate Hb levels by measuring the OD of the
vessels and found a very good correlation (21). In our previous
study packed red blood cell transfusion in anemic preterm
infants increased FSVD 2 h after the transfusion with an
additional rise 24 h later (9), but FSVD and Hb levels did not
correlate. This apparent contradiction might be explained by
the additional increase in FSVD 24 h after the transfusion
without change in hematocrit. We know from animal studies
that storage of RBCs leads to biochemical and physical
changes that hinder their function during transfusion (22–24)
and decrease functional capillary density (25). For the de-
pleted RBC 2,3-diphosphateglycerate acid (2, 3 DPG) and
ATP concentrations at least one day is required until 50 to

70% of the normal level of 2,3 DPG is recovered and 1 wk for
full recovery. In the previously mentioned study Nadeau did
not observe a decline in vessel density in all of the anemic
subjects and speculates that decreased vessel density might
offer information about adaptive processes and the pathophys-
iological changes caused by anemia. In our transfusion study,
Hb levels were very low at the start and obviously increased
significantly after the 4-h transfusion. In the current study, Hb
levels decreased slowly over the 4 wk mostly due to anemia of
prematurity and iatrogenic blood loss. Adaptive processes are
very different in these situations, in particular concerning
transfusion where adult RBC of various age are infused. Using
a different technology near-infrared photoplethysmography
(NIRP) we have previously shown, that elective transfusions
do not change the blood flow in arteriovenous anastomoses as
the nonnutrient, high volume, low resistance pathway (26).
These vessels are the main source for the NIRP signal. Cap-
illary hematocrit is regulated and maintained at comparatively
low values which are about 50% of normal systemic value
(27,28). Neonatal RBCs and microcirculatory blood flow dif-
fer significantly from the adult. Neonatal RBCs are larger with
higher relative viscosity than adult RBCs, whereas blood
viscosity is 12% less in neonates than in adults (29). Neonatal
blood also has a larger decrease in blood viscosity in artificial
tubes with diameters �500 �m than adult blood. Zilow and
Linderkamp (30) showed that both the large cell volume and
the increased membrane elasticity of neonatal RBCs contrib-
ute to the enhanced reduction of viscosity in narrow tubes. The
greater viscosity reduction of neonatal RBCs in narrow ves-
sels may be an important prerequisite for the lower vascular
resistance and high flow conditions in the neonate. This might
also explain why we found a significant correlation between
Hb levels and FSVD in our patients with a decrease in FSVD
in neonates with severe anemia. The importance of blood
viscosity to maintain tissue perfusion at the capillary level has
been shown in extreme hemodilution with low- and high-
viscosity solution in the animal model (31).

Both FSVD and incubator temperature decreased over time
(Fig. 1). The close correlation of incubator temperature and
FSVD (Fig. 2) could be due to maturation of the skin with
fewer visible vessels and therefore lower heat loss. It is less
likely that the lower incubator temperatures lead to constric-
tion of vessels to reduce heat loss, since incubator tempera-
tures were closely regulated to keep body temperature con-
stant at 37°C. With NIRP we have found previously, that
raising incubator temperature to “comfort temperature” with a
temperature difference of less than 2°C between abdominal
wall and extremities significantly changes skin blood flow in
the extremities of premature infants with clinical signs of
compromised microcirculation, but not in infants without such
signs (32). NIRP primarily assesses the nutritive flow in the
deeper layers of the skin. Incubator temperatures in that study
were much higher at 38°C and we did not find any changes in
infants without compromised microcirculation.

With the Cytoscan™ A/R, the diameter is measured as the
width of the RBC column present in the vessel. The true
anatomical vessel diameter therefore could be underestimated.
Harris et al.(17) have shown, that identical vessels measured

Figure 2. Correlation of (A) Hb and (B) incubator temperature with FSVD.
Both Hb levels and incubator temperature correlated directly with FSVD.
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by OPS imaging are 4 to 5 �m smaller in comparison to
intravital fluorescence microscopy. Diameters of the vessels
measured in our study ranged from 7 to 24 �m. In neonates,
vessels larger than 25 to 30 �m are deeper in the dermis and
only small loops can be observed before the vessel disappears
into the deeper layer (33,34). In neonates due to the small size
of the vessel, arterioles, capillaries, and post capillary venules
cannot be clearly distinguished (8,9).

The marginal decrease of RBC vel during the first month of
life did not reach statistical significance but RBC vel corre-
lated directly with the Hb levels. In addition, RBC vel in-
versely correlated with mean systolic blood pressure. This
seems surprising since past studies have shown that blood
pressure in premature infants correlates with blood flow (35).
In those studies, blood flow was measured with venous oc-
clusion plethysmography, which will determine arterial blood
flow in vessels of all sizes. Our RBC vel was obtained in the
microvasculature where in neonates arterioles and venules
cannot be distinguished with this method. Therefore, our
values probably are a mixture of venous and arterial flow
velocities. Previous studies have shown that resistance and
viscosity play a crucial role in neonatal peripheral blood flow
(35,36). Both undergo marked changes in the first days of life.
Our values are similar to the results of Norman, who deter-
mined RBC vels in the nail fold capillaries of term infants in
the first week of life.

FSVD is used as a measure of tissue perfusion. Because
only RBC-perfused vessels are counted, it is also an indirect
measure of the oxygen delivery. FSVD significantly decreased
possible due to the drop of Hb levels and or due to maturation
effects of skin, which lead to decreased incubator tempera-
tures. From the time of birth, the Hb concentration is reduced
by physiologic reduction of the red blood cells due to anemia
of prematurity and iatrogenic blood loss (37). FSVD inversely
correlated with heart rate and systolic blood pressure.

In our study, we compared very preterm infants (gestational
age �26 wk) with preterm neonates (gestational age �28 wk).
We did not find any differences between the two groups in the
first month of life with regard to diameter, red blood cell
velocity and vessel density.

OPS imaging allows direct observation of RBC rheology in
vivo and enables monitoring of the microcirculatory response
to therapy and changes in the microcirculation for example in
pathologic conditions such as anemia or infection, thus be-
coming a valuable clinical tool. This, however, will require a
standardized and automated analysis routine that has been
validated as a true measure of tissue perfusion. At present, the
calculations have to be done off-line and are rather time-
consuming, which limits the current clinical use of OPS
imaging. Another problem of OPS imaging for microvascular
monitoring in humans is the variability of the vessels mea-
sured. Identical vessels cannot be examined over time because
it is not possible to identify the same vessel yet. RBC velocity
in particular is difficult to measure since it depends on at least
10 s video sequences with no movement and vessels of
enough length.

In conclusion, images of the microvasulature of the skin can
be obtained in premature infants for at least the first month of

life. We suggest that OPS imaging can be used to monitor
microcirculatory parameters in preterm infants regardless of
gestational age or postnatal age. This method allows the
assessment of the quality of tissue perfusion for the skin. We
know blood pressure homeostasis is superior to maintenance
of peripheral perfusion in the newborn period, since this
patient population respond to acute hypovolemia with marked
decrease in peripheral flow and an increase in peripheral
resistance and only small changes in blood pressure (35).
Thus, the measurements of the microcirculation of the skin
might be an easily accessible window to obtain better under-
standing of circulatory changes in infants in the postnatal
period. Our data are essential as basis for further studies in this
field. Hb levels have a substantial influence on FSVD and
therefore need to be taken in account. The surrounding envi-
ronment, such as incubator temperatures, may also affect the
microcirculation and possibly maturation effects of the skin.
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