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ABSTRACT: Intrauterine growth retardation (IUGR) has been
linked to later development of type 2 diabetes in adulthood. An
abnormal metabolic intrauterine milieu affects the development of the
fetus by permanently modifying gene expression of susceptible cells.
Altered gene expression persists after birth, suggesting that an epi-
genetic mechanism may be responsible for changes in transcription.
Uteroplacental insufficiency (IUGR) is associated with hypomethy-
lation and hyperacetylation of genomic DNA in brain and liver of
IUGR fetal and juvenile rats. These findings are associated with zinc
deficiency that often accompanies fetal growth retardation. Studies in
the IUGR rat also demonstrate that an abnormal intrauterine envi-
ronment induces epigenetic modifications of key genes regulating
�-cell development and experiments directly link chromatin remod-
eling to suppression of transcription. Dietary protein restriction of
pregnant rats causes fetal growth retardation and is associated with
hypomethylation of the glucocorticoid receptor (GR) and PPAR�
genes in liver of the offspring. It is postulated that these epigenetic
changes result in the observed increase in gene expression of GR and
PPAR�. Future research will be directed at elucidating the mecha-
nisms underlying epigenetic modifications in offspring. (Pediatr Res
61: 64R–67R, 2007)

An adverse intrauterine milieu impacts the development of
the fetus by modifying gene expression in both pluri-

potential cells or terminally differentiated, poorly replicating
cells. The long-range effects on the offspring (into adulthood)
depend upon the cells undergoing differentiation, prolifera-
tion, and/or functional maturation at the time of the distur-
bance in maternal fuel economy. Permanent alterations to the
phenotype of the offspring suggest that fetal growth retarda-
tion is associated with stable changes in gene expression. In
this article, a general review of epigenetics will be provided
and the possible causal role of chromatin remodeling in the
development of type 2 diabetes will be discussed.

CHROMATIN STRUCTURE, DNA METHYLATION,
AND GENE EXPRESSION

Epigenetic modifications of the genome provide a mecha-
nism that allows the stable propagation of gene activity states
from one generation of cells to the next. Excellent reviews on
this topic appear frequently, reflecting the rapid advances of

knowledge in the field (1–4). Epigenetic states can be modi-
fied by environmental factors, which may contribute to the
development of abnormal phenotypes. There are at least two
distinct classes of epigenetic information that can be inherited
with chromosomes. One class of epigenetic control of gene
expression involves changes in chromatin proteins, usually
involving modifications of histone tails. In eukaryotes, DNA
is assembled with histones to form the nucleosome, in which
DNA is wrapped approximately two turns around an oc-
tameric complex composed of two molecules of each of the
four histones H2A, H2B, H3, and H4. The amino termini of
histones can be modified by acetylation, methylation, sumoy-
lation, phosphorylation, glycosylation, and ADP ribosylation.
The most common modifications involve acetylation and
methylation of lysine residues in the amino termini of H3 and
H4. Increased acetylation induces transcription activation,
whereas decreased acetylation usually induces transcription
repression. Methylation of histones is associated with both
transcription repression and activation. Moreover, lysine res-
idues can be mono-, di-, or trimethylated in vivo, thus provid-
ing an additional mechanism of regulation. Trimethylation of
lysine residues is only found at active genes, whereas dim-
ethylation occurs in both active and inactive chromatin. Sev-
eral chromatin modification states are mutually reinforcing.
For example, methylation of lysine 9 on histone H3 can
promote DNA methylation, and CpG methylation (see below)
stimulates methylation of lysine 9 on histone H3 (5). Thus,
chromatin modifications induced by adverse stimuli are self-
reinforcing and can propagate.

The second class of epigenetic regulation is DNA methyl-
ation, in which a cytosine base is modified by a DNA meth-
yltransferase at the C5 position of cytosine, a reaction that is
carried out by various members of a single family of enzymes.
Approximately 70% of CpG dinucleotides in human DNA are
constitutively methylated, whereas most of the unmethylated
CpGs are located in CpG islands. CpG islands are CG-rich
sequences located near coding sequences and serve as pro-
moters for the associated genes. Approximately half of mam-
malian genes have CpG islands. Methylation of CpG sites is
also maintained by DNA methyltransferases. DNA methyl-
ation is commonly associated with gene silencing and con-
tributes to X-chromosomal inactivation, genomic imprinting,
and transcriptional regulation of tissue-specific genes during
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cellular differentiation (6–8). The methylation status of CpG
islands within promoter sequences works as an essential reg-
ulatory element by modifying the binding affinity of transcrip-
tion factors to DNA binding sites.

Most CpG islands remain unmethylated in normal cells,
however, under some circumstances such as cancer (9–14)
and oxidative stress (see below), they can become methylated
de novo. This aberrant methylation is accompanied by local
changes in histone modification and chromatin structure, such
that the CpG island and its embedded promoter take on a
repressed conformation that is incompatible with gene tran-
scription. It is not known why particular CpG islands are
susceptible to aberrant methylation. A recent study by Feltus
et al. (15) suggests that there is a “sequence signature asso-
ciated with aberrant methylation.” Of major significance to
type 2 diabetes is their finding that Pdx-1, a pancreatic ho-
meobox transcription factor, was one of only 15 CpG genes (a
total of 1749 genes with CpG islands were examined) that
were methylation susceptible under conditions of increased
methylation induced by over-expression of a DNA methyl
transferase.

NUTRITIONAL STATUS AND EPIGENETIC
MODIFICATIONS

The metabolic or nutritional state of the organism directly
influence epigenetic modifications and the process of chroma-
tin remodeling depends upon a number of products derived
from intermediary metabolism such as S-adenosyl methionine
(SAM), acetyl CoA, and nicotinamide adenine dinucleotide
(NAD�).

A role for environmental regulation of epigenetic phenom-
ena has been established by experiments performed in agouti
mice (16,17). In this animal, an endogenous retrovirus-like
transposon sequence is inserted close to the gene coding for
the Agouti protein. An unmethylated retrotransposon pro-
moter overrides the agouti promoter, resulting in ectopic
agouti expression and a yellow coat. A methylated retrotrans-
poson cannot do this, resulting in a wild-type agouti coat.
Yellow mothers produce more yellow offspring than agouti
mothers, even when all the mice are genetically identical.
These mice have yellow hair, obesity, hyperinsulinemia, dia-
betes, increased somatic growth, and increased susceptibility
to hyperplasia and tumorigenesis (18). Wolff et al. (16) have
investigated whether maternal diet can alter the phenotype of
the AIAP mice. They found that when pregnant females are fed
a diet supplemented with methyl donors, a larger proportion of
offspring have a wild-type coat color as compared with the
offspring of mothers fed a standard diet. These results suggest
that an environmental stimulus early in life can change the
stable expression of genes and affect the phenotype of the
adult.

CHROMATIN REMODELING AND DISEASE
STATES

Homeobox genes are frequently down-regulated in associ-
ation with aberrant methylation in human cancer cells (10) and
the HOX gene clusters are a hotspot of de novo methylation in

lung cancers (11). In addition to targeted DNA methylation
changes in response to external stimuli, random DNA meth-
ylation changes have been shown to occur during aging of
organisms in several tissue types (12,13).

Hypermethylation of specific genes has also been observed
in tissues of aging individuals (13,19). Type 2 diabetes is
strongly age-related, as its incidence is increased in older
populations, and the metabolic profile of individual patients
deteriorates over time. DNA methylation errors that accumu-
late with increasing age could provide one explanation, and
this may be related to oxidative stress.

Reactive oxygen species can also lead to alterations in DNA
methylation without changing the DNA base sequence (20).
Such changes in DNA methylation patterns have been shown
to affect the expression of multiple genes (20). Replacement of
guanine with the oxygen radical adduct 8-hydroxyguanine
profoundly alters methylation of adjacent cytosines (20). Hi-
stones, because of their abundant lysine residues, are also very
susceptible to oxidative stress (21–23).

EPIGENETIC REGULATION OF GENE
EXPRESSION IN FETAL GROWTH RETARDATION

A number of studies have suggested that uteroplacental
insufficiency, the most common cause of intrauterine growth
retardation in the developed world, induces epigenetic modi-
fications in the offspring (24–26). Fetal growth retardation is
induced by bilateral uterine artery ligation in the pregnant rat
(27). The unique feature of this model is its ability to induce
diabetes in adult animals at approximately 15–26 wk of age
with underlying �-cell secretory defects and insulin resistance,
the salient features of most forms of type 2 diabetes in the
human (27,28). Genome-wide DNA hypomethylation has
been found in postnatal IUGR liver and was associated with
an increase in total H3 acetylation (24). Acetylation of histone
H3 and acetylation of H3 lysine-9 (H3/K9), lysine-14 (H3/
K14), and lysine-18 (H3/K18) was increased at the promoters
of PGC-1 and CPTI, respectively, in IUGR liver (26). At d 21
of life, the neonatal pattern of H3 hyperacetylation persisted
only in the IUGR males. Whether hyperacetylation at these
sites actually causes increased transcription of PGC-1 or
CPT1 and how these findings relate to a phenotype in the
offspring remains to be determined.

CHROMATIN REMODELING IN THE �-CELL OF
IUGR RATS

Studies in the IUGR rat also demonstrate that fetal growth
retardation induces epigenetic modifications of key genes
regulating �-cell development (28a). Pdx-1 is a homeodo-
main-containing transcription factor that plays a critical role in
the early development of both endocrine and exocrine pan-
creas, and then in the later differentiation and function of the
� cell. As early as 24 h after the onset of growth retardation,
Pdx-1 mRNA levels are reduced by more than 50% in IUGR
fetal rats. Suppression of Pdx-1 expression persists after birth
and progressively declines in the IUGR animal, implicating an
epigenetic mechanism.
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The proximal promoter of Pdx-1 is obligate for transcrip-
tion of the gene, and the histones H3 and H4 are heavily
acetylated in normal �-cells (29). However, in islets of IUGR
animals, H3 and H4 in this region of the Pdx-1 promoter are
deacetylated. Histone deacetylation is catalyzed by HDAC,
and HDAC1 is strongly associated with the proximal Pdx-1
promoter in IUGR �-cells. Reversal of deacetylation by an
HDAC inhibitor normalizes Pdx-1 expression in islets of
IUGR animals, demonstrating that histone deacetylation con-
tributes to the observed Pdx-1 transcription suppression.

Unlike acetylation, histone H3 methylation can be equally
associated with either transcriptional activation or repression.
Methylation of the lysine residue Lys4 H3 (H3-K4) correlates
with activation of gene expression, whereas H3Lys9 (H3-K9)
methylation is involved in the establishment and maintenance
of silent heterochromatin regions. Lysine methylation is cat-
alyzed by the action of histone methyltransferases (SET7/9),
which demonstrate a high degree of specificity for H3–K4.
There is a loss of binding of SET7/9 to the proximal promoter
of Pdx-1 in �-cells from IUGR animals, which results in a
marked reduction of methylation of H3K4 in this region of
Pdx-1. These observations demonstrate that the level of H3
acetylation is linked to the degree of H3K4 methylation.

Transcriptional repression is also facilitated by methyl-CpG
binding proteins that bind to promoter-proximal methylated
DNA sequences, thereby maintaining the condensed nucleo-
some structure (30). However, one methyl-CpG-binding do-
main protein-MeCP2 also mediates transcription repression
through histone deacetylation (31–33). MeCP2 contains a
transcriptional repression domain that functions by recruit-
ment of the co-repressor Sin3A, a histone deacetylase (31–
33), and a histone 3 lysine 9 methyltransferase (Suv39h)
(34,35). MeCP2 binding is seen in IUGR fetal pancreas as
early as 24 h after uterine artery ligation. Association of
MeCP2 with the proximal promoter of Pdx-1 precipitates
Sin3A binding at d 1 of life in IUGR islets. The repressor
complex consisting of MeCP2, Sin3A, HDAC1, and Suv39h
induce H3 deacetylation and methylation of H3K9. Thus, a
cascade of epigenetic events is triggered by IUGR, resulting in
permanent suppression of Pdx-1 expression. The sequence of
epigenetic events (Fig. 1) that occurs in IUGR islets leading to
suppression of Pdx-1 transcription appears to be the follow-
ing: MeCP2 binds to methylated DNA in the CpG island at the
Pdx-1 promoter. This results in recruitment of a repressor
complex, which catalyzes the deacetylation of H3 and meth-
ylation of H3K9, respectively. Deacetylation of H3 in turn
promotes the loss of H3K4 methylation, further suppressing
Pdx-1 transcription. As the IUGR animals age, DNA methyl-
ation of the CpG island progresses, thereby locking in the
silencing of Pdx-1 expression.

How do these events lead to diabetes? Targeted homozy-
gous disruption of Pdx-1 in mice results in pancreatic agenesis
(36), and homozygous mutations yield a similar phenotype in
humans (37). Milder reductions in Pdx-1 protein levels, as
occurs in the Pdx�/– mice, allow for the development of a
normal mass of � cells (38), but result in the impairment of
several events in glucose-stimulated insulin secretion (39).
These results indicate that Pdx-1 plays a critical role, distinct

from its developmental role, in the normal function of � cells
(40). This may be the reason that humans with heterozygous
missense mutations in Pdx-1 exhibit early and late onset forms
of type 2 diabetes (40,41).

SUMMARY

The studies described above clearly show that environmen-
tal effects can induce epigenetic alterations. Much of the
recent progress in understanding epigenetic phenomena is
directly attributable to technologies that allow researchers to
pinpoint the genomic location of proteins that package and
regulate access to the DNA. The advent of DNA microarrays
and inexpensive DNA sequencing has allowed many of those
technologies to be applied to the whole genome. It is possible
that epigenetic profiling of CpG islands in the human genome
can be used as a tool to identify genomic loci that are
susceptible to DNA methylation. Aberrant hypermethylation
may be then be used as a biomarker for disease (42–45).

The genome-wide mapping of histone modifications by
ChIP-chip has led to important insights regarding the mecha-
nism of transcriptional and epigenetic memory, and how
different chromatin states are propagated through the genome
in yeast (45). To date, there is only one published report of a
genome-wide, high-resolution ChIP-chip study in mammalian
cells (46). In the near future, it is likely that technologies will
be developed that will allow genome-wide epigenetics studies,
especially applied to the limited numbers of cells that can be
isolated to a high degree of purity by techniques such as laser
capture microscopy.
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