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ABSTRACT: The relationship between developing biologic tissues
and their dynamic fluid environments is intimate and complex.
Increasing evidence supports the notion that these embryonic flow-
structure interactions influence whether development will proceed
normally or become pathogenic. Genetic, pharmacological, or surgi-
cal manipulations that alter the flow environment can thus profoundly
influence morphologic and functional cardiovascular phenotypes.
Functionally deficient phenotypes are particularly poorly described
as there are few imaging tools with sufficient spatial and temporal
resolution to quantify most intra-vital flows. The ability to visualize
biofluids flow in vivo would be of great utility in functionally
phenotyping model animal systems and for the elucidation of the
mechanisms that underlie flow-related mechano-sensation and trans-
duction in living organisms. This review summarizes the major
methodological advances that have evolved for the quantitative char-
acterization of intra-vital fluid dynamics with an emphasis on assess-
ing cardiovascular flows in vertebrate model organisms. (Pediatr
Res 60: 6–13, 2006)

ROLE OF FLUID FLOW IN DEVELOPMENT

In addition to facilitating convective transport, intra-vital
fluid flows impose substantial mechanical stresses on adja-

cent and underlying cells. These flow-induced forces are
widely acknowledged as critical to the proper development
and maintenance of many aspects of biologic form and func-
tion. This is particularly true during embryogenesis where
internally-derived, flow-related forces are thought to be mor-
phogens influencing a number of key developmental processes
including; symmetry determination (1,2), cardiogenesis (3–5),
blood vessel formation (6,7), glomerulogenesis (8), brain de-
velopment (9), and lung development (10,11). In addition to
their roles during normal development, the biomechanical
forces generated by aberrant intra-vital flow have been impli-
cated as important factors in the pathogenesis of a variety of
diseases in the cardiovascular (12–14), nervous (15–17), and
renal (18–20) systems.
The specific mechanisms by which living cells sense, trans-

duce and respond to flow-induced stresses are only partially

known (21–25). In vitro studies have contributed a great deal
to our understanding of these signaling pathways in general,
and how cardiovascular endothelial cells, the flow sensors and
transducers lining the vascular walls, react to shear stress
(26–29), stretch (30,31), and pressure (32,33). Of these, wall
shear stress has received the most attention as both its mag-
nitude and orientation are thought to play roles during vascu-
lar development. Fluid shear stresses occur within the cardio-
vascular system as blood flows tangentially to the surrounding
vessel wall. This frictional force is defined by the product of
the shear rate (derivative of velocity with respect to the vessel
radius) and the dynamic viscosity of blood. To reconcile the
complex velocity gradients that exist within a pulsing, flexible
heart tube filled with a moving, non-Newtonian fluid we need
to obtain some understanding of the cross-sectional flow
profile of the vessel. With these data we are better able to
determine whether the flow has had time to establish itself into
the parabolic velocity profile expected for laminar flow or
whether perturbations in the flow have resulted in altered
cross-sectional gradients. Characterizing the magnitude and
orientation of the shear forces acting at the level of the
biologic flow sensors, rather than those calculated from mid-
lumenal flow, is critically important if we are to ascertain the
extent to which these biophysical forces influence cellular
response.
Although in vitro studies have been important in helping to

elucidate the responses of cultured endothelial cells to a
variety of biophysical stresses, their utility is reduced by our
inability to accurately reproduce the complexity of biologic
flows and the physicochemical interconnectivity of living
tissues. These limitations have led researchers in developmen-
tal biology to appreciate that in vivo mapping of biofluid flows
is the critical next step if significant further progress is to be
made in our understanding of intra-vital flow-structure inter-
actions during developmental and disease processes. Despite
its potential utility in dynamically characterizing many bio-
logic systems, flow mapping efforts to date have largely
focused on the developing cardiovascular system, because it
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appears very early in embryogenesis, is optically accessible,
and exhibits a wide range of flow dynamics.

HEMODYNAMICS AND CARDIAC DEVELOPMENT

The influence of blood flow on the form of the heart, and
conversely, the effect of genetically-determined form on flow,
have been topics of debate for nearly a century (34–36).
Goertller (37) was probably correct when he pointed out that
while some aspects of cardiovascular formation are certainly
pre-programmed, other areas are just as surely dependent upon
the characteristics of local fluid flow. So how does the energy
imparted to the blood influence cardiac morphology? Several
hypotheses have been posited, including: 1) differential cellu-
lar growth due to residual stress and strain (38); 2) changes in
blood flow volume and pressure zones restructuring media
replacement and affecting luminal diameters (39–40); 3) fluid
shear rates at intra-cardiac surfaces (41,42); and 4) blood flow
leading to endothelium-mediated signals (43,44).
There is a wealth of evidence suggesting that flow-induced

stresses, such as the frictional shear imposed by blood flow on
adjacent cardiovascular endothelial cells, can substantially
influence vascular development and adaptation as well as
pathogenesis of vascular disease adult organisms (12,45–50).
In fact, much of our current understanding about cellular
responses to flow-induced forces comes from studies of the
mature arterial endothelium. In such systems there is substan-
tial evidence for multiple flow sensors (26,51–54), capable of
eliciting responses via MAP kinases (55,56), PI3-kinase (57–
59), protein kinase C (60), NF-�B (61) and other signal
transduction pathways.
Evidence that different flow regimes (e.g., steady versus

pulsatile, laminar versus turbulent) can differentially regulate
gene expression (62–64) attests to the subtlety with which
mature cardiovascular tissues can respond to changes in blood
flow-induced forces. Interestingly, many of these flow-
regulated genes encode products that directly regulate tissue
growth and remodeling (65,66) or are important transcription
factors that have been linked to growth control (67,68). This
supports the notion that some of the same sensory transduction
pathways used by mature animals may be found in developing
organisms as well. Unfortunately, our understanding of the
hemodynamic milieu within the developing vertebrate embryo
is far from complete. The data we do have emphatically tells
us that experimental disruptions of the venous return or arte-
rial outflow during early development can lead to severe
dysmorphogenesis (69–72). However, our ability to quantita-
tively describe these complex biologic flows within living,
growing organisms is frequently limited by their small size
and the relative inaccessibility of internal fluid flow environ-
ments to flow-sensing instrumentation. In the absence of
reliable intra-vital flow data, discourse concerning the under-
lying factors responsible for both normal and pathophysiolog-
ical cardiovascular development will be incomplete and the
conclusions drawn from it will remain speculative. Fortu-
nately, this problem has not gone unnoticed and, as a result,
significant research effort is being expended in the develop-

ment of instrumentation capable of quantifying micro-scale
intra-vital flows.

MEASURING INTERNAL FLUID FLOW

The biomedical research literature is replete with imaging
techniques aimed at characterizing intra-vital flows, with gen-
erally mixed results. One approach commonly used in large
mammals is to physically position a flow sensor directly into,
or adjacent to the flow field of interest (73–75). While this is
the most direct method for obtaining quantitative flow data,
the typically invasive nature of positioning a flow probe in
such a manner can significantly perturb an adult system and
the effect on a developing embryo may be prohibitive. Despite
this difficulty, the use of surgically implanted pulsed Doppler
probes in mouse and chick embryos have led to an improved
understanding of developmental hemodynamics in vertebrates
(76–84).
Embryonic chicks are highly amenable to this technique as

they can be rotated in windowed eggs to bring the vessel of
interest to a superficial position for optimal orientation of the
small (~0.5 mm) piezoelectric crystal probe. Although such
probes have been used quite effectively, Doppler ultrasound
(US) techniques can be confounded by moving vessel bound-
aries or by flow in closely adjacent vessels. As a result, great
care must be taken in choosing the anatomical area to be
examined. Although its temporal resolution can be quite good,
spatial resolution of Doppler US is limited by the size and
angular orientation of the piezoelectric crystals. In addition,
signal frequency must be carefully monitored as high-intensity
pulsed US has been shown to affect cardiac rhythm and aortic
blood pressure in frogs (85).
In response to these issues, other, less invasive medical

imaging technologies have been refined for small scale bio-
fluids imaging in humans with potential application to small
animal models as well. Phase contrast magnetic resonance
(PC-MR) imaging of blood flow in humans is based on a
phase shift of the magnetization when the blood flows in the
direction of a magnetic field gradient (86). Partial volume
errors and errors related the area to be interrogated still persist
when examined on smaller scales although new algorithms are
being developed to improve spatial resolution (87). Non-gated
MR imaging has been used in conjunction with Doppler US
for detection of slow blood flows in humans (88,89), as has
Orthogonal Polarization Spectral (OPS) imaging (90). Deu-
terium MR imaging of slow intra-ocular fluid flow has been
accomplished in rabbits with 100 �m spatial resolutions (91).
Unfortunately, none of these approaches provide the temporal
sensitivity necessary to characterize typical embryonic cardio-
vascular flow. MR imaging has shown great promise as an
anatomical tool for assessing developmental cardiovascular
defects in the mouse model (92–94). Unfortunately, the proper
preparation of the embryos requires chemical fixation, elimi-
nating the possibility of dynamic measurements of cardiovas-
cular performance. Positron emission tomography (PET) has
been adapted to detect cerebral blood flow dynamics in adult
rabbits (95) but intrinsically limited spatial resolution (96)
suggests limited utility on the developmental size scale.

7QUANTIFYING DEVELOPMENTAL FLOWS



Perhaps the most promising new imaging technology for
quantifying developmental biofluid flows is US biomicros-
copy (UBM)-Doppler, a non-invasive, high-frequency echo-
cardiography system. UBM is currently capable of achieving
spatial resolutions on the order of 30 �m axial and 90 �m
lateral with sufficient temporal resolution to make reliable
velocity measurements within developing vertebrate embryos.
UBM has been successfully used to examine cardiovascular
morphology, dimensions and blood flow in the mouse and
zebrafish embryos (97–99). A more detailed review of devel-
opmental UBM imaging can be found in this issue of Pediatric
Research.
While most of these imaging modalities continue to operate

well within their prescribed research niche, few possess the
spatial and temporal resolution required to quantitatively char-
acterize the cross-sectional flow profile of a developing blood
vessel. As such, the development of new, more powerful
imaging technologies is necessary if we are to derive the flow
induced forces acting at the level of the biologic flow sensors
within living organisms. Several research groups are now
looking to transfer emerging fluid mechanical engineering
technologies to these challenging biomedical applications.

QUANTITATIVE FLOW VISUALIZATION IN
ZEBRAFISH

Ludwig Prandtl’s work in the early part of the twentieth
century was the beginning of the movement from passive
observation of fluid flows to experimentally extracting infor-
mation from them. A pioneering fluid mechanist, Prandtl
suspended mica particles on the surface of moving water to
qualitatively study aspects of unsteady flow (100). Recent
advances in optics, lasers and computer technologies allow
modern day fluid mechanists to collect detailed quantitative
data about instantaneous flow velocities from the same kinds
of seeded flows observed in Prandtl’s time. To transfer these
technologies from fluid mechanical engineering applications
to the task of quantitatively mapping developmental biologic
flows a tractable animal model system is needed.
The ideal animal model system should demonstrate circu-

latory functions characteristic of other vertebrate models and
be optically accessible with modern microscopic tools. To find
such a model researchers are turning to “lower vertebrate”
systems (e.g., fish and frogs). The zebrafish (Danio rerio), has
become an important model system for studying organo-

genesis, particularly the form and function of the developing
cardiovascular system (101–104). Although the single-circuit,
two-chambered piscine heart cannot fully model all aspects of
mammalian cardiogenesis, many fundamental developmental
processes (e.g., heart tube formation, looping, valvulogenesis
and septation) follow a pattern of extreme evolutionary con-
servation across vertebrate taxa. This affords us the opportu-
nity to study the pathways underlying important cardiogenetic
processes in zebrafish to better understand how those same
processes unfold in mammals and specifically, in humans. In
fact, zebrafish possess a number of life history characteristics
that make them more amenable than their mammalian and
avian counterparts to studies of dynamic developmental im-
aging. Included among these are external fertilization, small
size, rapid development, optical transparence, and genetic
accessibility (105).
The tissue clarity afforded by a transparent embryo greatly

facilitates non-invasive optical dissection using modern con-
focal microscopic techniques (Fig. 1). Structural contrast can
be provided by vital staining or the use of transgenic lines
expressing fluorescent protein markers like green fluorescent
protein (GFP) (106,107). Embryos expressing the appropriate
labels can then be anesthetized and easily mounted for micro-
scopic observation (108). The zebrafish cardiovascular system
begins to form early in development with pumping of blood
commencing at about 1 day post-fertilization (dpf) (109).
Astounding anatomical detail of the embryonic zebrafish heart
and its microvasculature has now been described throughout
ontogeny from microscopic observation of both fixed tissues
(4,110) and in living tissues after the introduction of fluores-
cently labeled dyes/microspheres. The latter have been used to
produce exquisite micro-angiograms of the developing ze-
brafish vasculature, allowing us an unprecedented glimpse at
the way primary and secondary blood vessels form (111,112).
Functional phenotyping of cardiovascular performance be-

gan with recordings of micro-scale blood pressures within the
living zebrafish (4,110,113,114). Using native particles (e.g.,
erythrocytes, platelets) as flow markers, the first descriptions
of the gross blood flow patterns in developing zebrafish were
made possible. Particle displacements were used to approxi-
mate blood flow in zebrafish larvae by measuring the differ-
ential lengths of the vector shifts between two adjacent video
frame fields acquired during microscopic observation (115). In
addition to determining erythrocyte velocities, this technique

Figure 1. Optical dissection of a zebrafish embryo. Pictures display individual confocal sections taken in 20 �m increments (dorsal to ventral) through the heart
of a Bodipy-ceramide stained 4.5-dpf zebrafish embryo. At 20°C this heart was beating at approximately 2 Hz. (A) Top of the ventricle is visible, (B) the atrium
is becoming visible beneath the ventricle, (C) the top of the bulbus arteriosus (outflow tract) can be seen, (D) Moving erythrocytes leave dark streaks in the
fluoresced serum making vortices and jets visible, (E) High-velocity flow in the outflow tract feeds the branchial aortae.
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was an effective way to visualize their relative distribution
within anatomical regions of interest. Overlays of multiple
particle pathlines were used to produce reasonably good ap-
proximations of vessel inner dimensions as well. Erythrocyte
tracking was also used in a recent optical analysis of blood
flow in the superficial vasculature of the embryonic mouse
yolk sac (116). Blood flow velocities were measured by
confocally line scanning images perpendicular to the flow and
measuring the vertical distortion of the circular red blood cells
with respect to time. In large diameter vessels (200 �m)
cross-sectional flow profiles were reconstructed from erythro-
cyte velocity measurements and shear stresses calculated.
The increasingly widespread use of discrete particles sus-

pended in the blood as flow tracers has hastened the introduc-
tion of sophisticated flow visualization analysis techniques to
the study of intra-vital biofluids flows. Most of these methods
use time-sequenced images of particle fields for either indi-
vidual particle tracking or statistical descriptions of particle
groups for obtaining displacement information and subse-
quently, velocity fields (117). From these velocity maps a
number of useful force fields can be derived. One of these
analytical techniques, digital particle image velocimetry
(DPIV), is becoming the new technical standard for creating
quantitative maps of in vivo flow environments.

MAPPING DEVELOPMENTAL FLOWS WITH DPIV

DPIV is a powerful global quantitative flow visualization
method based on following groups of particles as they move
through a defined space. In evaluation of external fluid flows
(e.g., around the wing of a model plane), small reflective
particles are used to seed the fluid (air or water) volume within
which the object is suspended and are briefly illuminated as
they pass through a pulsed laser sheet. Two consecutive
images of the reflected particles are then acquired with a
high-speed CCD camera over a short time interval and the
resulting image pairs are digitally captured. Data processing is
accomplished by recognizing that two sequential particle field
images can together produce a shifted composite image de-
picting motion. A field of displacement vectors can be ob-
tained by analyzing the movements of localized groups of
particles. Mean velocity vectors are statistically determined by
cross-correlation of sub-sampled regions (“interrogation win-
dows”) extracted from the two image fields (118) (Fig. 2A–B).
For measuring internal flows the same general principles
apply. Due to the small size of zebrafish embryos, quantitative
flow visualization by DPIV requires the use of microscopic
observation of the flow fields. To generate quantitative flow
maps, an appropriate optical system is necessary. This system
must have: 1) the proper spectral specifications to visualize
particles seeded within the flow field (i.e., dependant on the
particle label); 2) an image recording system of sufficient
quantum efficiency and speed to capture the flows of interest
under a variety of experimental conditions (e.g., high-speed or
fluorescently labeled flows), and 3) the ability to collect 3-D
information over time with the necessary acquisition tools and
software for subsequent flow pattern analysis.

Quantitative characterization of any flow field by DPIV is
predicated on the proper seeding of the fluid with markers of
the appropriate type and density such that the motions of those
particles accurately reflect the spatial and temporal patterns of
the flow. This is particularly true of biologic flow fields which
are rife with confounding factors that may negatively influ-
ence the fidelity with which the particles represent the fluid
flow. It is critical for the tracer particles to mimic the local
flow conditions as closely as possible for accurate flow visu-
alization by DPIV.
A number of factors should be considered when choosing

particles for in vivo DPIV use including particle size, density,
surface properties, contrast, and biologic reactivity/toxicity
issues. The diameter of the tracer particles is of primary

Figure 2. DPIV analysis of fluid flow. (A) A typical 2-D plane of a fluid jet
seeded with reflective particles is illuminated with by a pulsed laser. Note the
2-cm diameter central jet and the way it is rolling up into a torus. (B) Velocity
vector field representing the cross-section from A. The warmer (e.g., red)
vectors indicate higher velocity flow and cooler vectors (e.g., blue) low
velocity flow. (C–D) High-velocity blood flow generated by a 4.5-dpf em-
bryonic zebrafish heart. Pictures are characteristic confocal sections from a
single time series of Bodipy-ceramide stained embryos. (C) Atrial systole and
ventricular filling. (D) Ventricular systole leading to refilling of the atrium.
(E–F) Overlay of DPIV velocity fields from real-time, high-speed imaging.
(E) Complex flow in the filling ventricle with higher velocity flow at the
atrio-ventricular constriction. (F) High-velocity trans-aortic jet through the
ventriculo-bulbal valve during systole. a, atrium; b, bulbus arteriosus; v,
ventricle; vbv, ventriculo-bulbal valve.
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importance as an individual particle must be large enough to
be discretely identified from other particles, yet small enough
to follow local flows with high precision. Recent in vivo
particle tracking studies have used native particles to map flow
fields within the superficial rat (119,120) and rabbit (121)
mesentery vessels, and in the developing zebrafish heart (71)
(Fig. 2). In this latter study, high-speed erythrocyte tracking
shed new insight into the dynamic nature of developmental
intra-cardiac flow on the micro-scale. Forces far in excess of
those predicted for fluid flow at Reynold’s numbers (inertial
forces/viscous forces) much less than one were measured
bringing into question the importance of their magnitude in
shaping both the normal form and function of the developing
heart. In the absence of such stimulation, development may
proceed abnormally (Fig. 3). In addition, observation of the
mechanics of early cardiac valve function and the mechanisms
responsible for minimizing backflow before they are fully
functional were elucidated (122). While wholly natural to the
organism, red blood cells are likely too large (~7–10 �m) to
provide the seeding densities needed for optimal statistical
cross-correlation and spatial resolution in smaller vessels.
Future research in intra-vital DPIV is likely to use commer-

cially manufactured microspheres as tracer particles. Micro-
spheres are currently available in a size range of about 0.02–
200 �m diameter and may possess a number of other useful
properties. Typically manufactured from polystyrene (�~1050
kg m�3), microspheres are designed to be neutrally buoyant in
typical biofluids (� � 1000–1066 kg m�3). This is important
as the particle density should closely match the density of the
surrounding fluid to prevent floating or settling, both of which
can lead to measurement error. The tendency of the tracer
particles to adhere to one another or to adjacent surfaces (e.g.,
other cells or vessel walls) is also an undesirable yet common
difficulty arising during in vivo measurements of flow. To

avoid particle aggregation, tracers can be treated with surfac-
tants or have their surface properties altered. One example is
the addition of a high density of carboxylic acids to the sphere
surfaces. The resulting negative surface charges increases
hydrophilicity, helping to keep the tracers suspended within
the fluid flow. In addition to the properties of the tracers
themselves the seeding density, or the number of particles per
unit area being visualized, is one of the most important factors
for obtaining good statistical correlations during the DPIV
data analysis (123). The optimal scenario is one in which the
tracers are sufficiently small to follow the fluid flow with great
fidelity, yet are large enough that they can be resolved indi-
vidually with available optics (Fig. 4). A recent in vitro
demonstration of the potential power DPIV in measuring fluid
dynamics resulted in extremely high spatial (9 �m � 2 �m)
and temporal (6000 Hz) resolution of a simulated biologic
flow field (124). This level of performance isn’t currently
possible for in vivo applications as under the low light condi-
tions of typical vital fluorescence microscopy even the best
back-thinned CCDs, CMOS sensors and electron multiplying
technologies have greatly reduced temporal resolution (up to
~100 frames s�1). Fortunately, most biologic applications
using DPIV do not require such extreme performance from
their optical system.

Figure 3. Reduced blood flow-induced forces induce dysmorphogenesis.
Glass beads (50 �m) were surgically positioned at 37 hpf (A) adjacent to the
heart inflow without blocking flow, (B) within the inflow effectively stopping
venous return to the heart or, (C) within the ventricular outflow, preventing
blood from exiting the heart. Blockages were checked after 20 h (D–F) and
heart development was accessed at approximately 100 hpf (G–I). Note the
effectiveness of the block demonstrated by a lack of erythrocytes in the
ventricle and their massive accumulation upstream of the bead in the atrium
(E, arrowhead). Development was normal in surgical control experiment (G)
but severely disrupted in flow-compromised treatments regardless of blockage
location (H,I). Outflow tract development was greatly reduced or absent
entirely and neither looping nor valvulogenesis occurred in flow-block ex-
periments. a, atrium; b, bulbus; v, ventricle.

Figure 4. High-speed confocal imaging and DPIV analysis of 1 �m pseudo-
colored fluorescent microspheres. (A) Seeded flow field at time � t0. (B)
Displaced particles time � t0��t. (C) Overlay of displacement fields allows
visualization of a linear shift from the lower right to upper left of the image.
(D) Velocity vector field generated by DPIV analysis confirms local flow
directions and magnitude. The warmer (e.g., red) vectors indicate higher
velocity flow and cooler vectors (e.g., blue) low-velocity flow.
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DPIV analysis of intra-vital fluid flows is a recent practice,
but a number of interesting biologic phenomena have already
been observed in these early experiments. For example,
in vivo velocity distributions across the superficial micro-
vessels of mouse cremaster muscle have been characterized by
DPIV (125). A fascinating result of this work is the predict-
ability of the hydrodynamically relevant thickness of the
glycocalyx layer lining the blood vessels. These data may be
useful in future studies which evaluate the integrity of the
vasoprotective glycocalyx layer during atherogenesis. We
may also gain a better understanding of the resistive forces
faced by rolling leukocytes during inflammatory responses
(126). Intra-vital use of DPIV outside of the cardiovascular
system is now beginning as well with the study of fluid
motions within the bells of jellyfish and the buccal cavities of
fish. These kinds of innovative applications of in vivo DPIV
will provide additional insight into the dynamic flow-structure
interactions involved in the development of locomotory and
feeding mechanisms (127,128).
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