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Perinatal brain injury is a major contributor to perinatal
morbidity and mortality, and a considerable number of these
children will develop long term neurodevelopmental disabil-
ities. Despite the severe clinical and socio-economic signifi-
cance and the advances in neonatal care over the past twenty
years, no therapy yet exists that effectively prevents or ame-
liorates detrimental neurodevelopmental effects in cases of
perinatal/neonatal brain injury. Our objective is to review
recent evidence in relation to the pervading hypothesis for
targeting time-dependent molecular and cellular repair mech-
anisms in the developing brain. In addition we review several
potential neuroprotective strategies specific to the developing
nervous system, with a focus on erythropoietin (Epo) because
of its potential role in protection as well as repair.

(Pediatr Res 57: 110R–117R, 2005)

Abbreviations
AMPA, amino-3-hydroxy-5-methylisoxazole-4-propionic acid
BBB, blood brain barrier
Bcl-xL, antiapoptotic gene B-cell lymphoma-x long
CP, cerebral palsy
Epo (R), erythropoietin (receptor)
FCI, focal cerebral ischemia
HI, hypoxia-ischemia
IVH, intraventricular hemorrhage
Jak2, Janus kinase-2
NF-�B, nuclear factor-�B
NMDA, N-methyl-D-aspartate
NO, nitric oxide
PVL, periventricular leukomalacia
PVWM, periventricular white matter
Stat5, the signal transducer and activator of transcription-5

INJURY TO THE DEVELOPING BRAIN AND
POTENTIAL THERAPIES

Brain injury in term infants. Between 20 and 50% of
infants affected by neonatal brain injury die during the neonatal
period, and 30–60% of the survivors suffer long-term se-
quelae, including CP, seizures, mental retardation, and learning
disabilities (1). The incidence is not decreasing and has even
been shown to increase in some areas without significant
decrease in CP in the last 30 y (2,3). Acquired problems in term
infants manifesting neonatal encephalopathy are damage due to
trauma, seizures, infection, HI, and stroke.
Perinatal stroke involving the middle cerebral artery has

been reported to occur commonly in term infants (4–8). The
incidence of perinatal FCI is higher than previously recognized
and may be more prevalent than global cerebral damage arising
from systemic asphyxia or infection. Symptomatic perinatal

stroke occurs in about 1 in 4000 term neonates (4,5). However,
many cases may go unrecognized inasmuch as early imaging
studies like head ultrasound may be unrevealing in neonates with
cerebral infarction (6), and early hospital discharge may preclude
in-hospital diagnosis in asymptomatic newborns. Risk factors
usually identified in epidemiologic investigations have been re-
cently reviewed in detail (7). In a cohort of 124 encephalopathic
term infants, 6 infants with acute FCI presented with seizures, and
their neurodevelopmental outcome at 30 mo was severely abnor-
mal (8), demonstrating that acute focal stroke is a serious occur-
rence in newborns who may inadvertently receive a diagnosis of
hypoxic ischemic encephalopathy.
Brain injury in preterm infants. In addition to HI and

stroke, IVH, PVL, and ventriculomegaly are recognized dis-
turbances in brain structures in preterm infants resulting from
a variety of genetic and acquired causes. Each year in the
United States, about 57,000 very low birthweight infants
(�1500 g) are born, 90% survive, and approximately 10% of
the survivors show signs of CP, and an additional 25–50%
display cognitive or behavioral deficits (9). For the extremely
low birth-weight infants the problem is worse, because about
25% of infants with birth weight 500–750 g, and more than
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10% of those weighing 750–1000 g develop severe IVH (10)
associated with high mortality rate, major motor deficits, and
significant cognitive delay. Cerebral hypoperfusion, chronic
hypoxia, poor cerebral autoregulation, and free radical produc-
tion can lead to necrosis, cystic formation, and gliosis of white
matter surrounding the ventricles. In addition to IVH and PVL,
there are changes that result from interference with normal
brain development. Many preterm infants with neurodevelop-
mental handicaps have no evidence of any clastic lesion by
clinical history and imaging, suggesting that preterm birth and
the complicated postnatal course disrupts many cellular and
subcellular mechanisms and also the genetically programmed
brain genesis.
Mechanisms of brain injury. The mechanisms of injury,

distinct patterns of injury, and selective vulnerability and
increased susceptibility to oxidative damage after HI in term
infants have been reviewed recently (11–15). The injury pro-
duced by many of these insults evolves over days, if not weeks,
in different regions and cell types. The extension of the damage
is directly associated with the nature and intensity of the injury
(16–18). Neuronal cell damage occurs not only through ne-
crotic but also through apoptotic processes. In necrosis, cell
death is triggered by an overwhelming external insult damag-
ing cellular organelles such as mitochondria. This results in the
loss of membrane integrity and the leakage of cytoplasmic
contents into the extracellular matrix. In contrast, cells dying
by apoptosis undergo a well-conserved and highly regulated
genetic program of cell death, do not lose membrane integrity,
and the organelles remain largely intact. This process, which
largely circumvents inflammatory reactions, is a biochemically
and genetically programmed cell death that requires time,
energy, and, to a certain extent, new gene transcription and
translation. One pathway that is implicated in apoptotic cell
death is the release of cytochrome c from the mitochondria
through the permeability transition pore. This pore is con-
trolled by the antiapoptotic B-cell lymphoma-2 (Bcl-2) pro-
teins. Once in the cytosol, cytochrome c can lead to the
activation of caspase-8 and caspase-9 that cleaves vital proteins
and triggers apoptotic execution by activating downstream
caspases and endonucleases. A broad range of signal transduc-
tion systems regulate integration of cellular function and plas-
ticity, as well as cell survival and injury. Many of these
processes have been shown to be significantly involved in
secondary neuronal cell death after perinatal hypoxic ischemic
insults. When mild, such insult causes no ATP reduction, a
moderate insult causes biphasic depletion and subsequent ap-
optosis, and a severe insult causes energy failure followed by
massive necrosis.
A second wave of neuronal cell damage occurs during the

reperfusion phase induced by the postischemic release of ox-
ygen radicals, synthesis of NO, inflammatory reactions, and an
imbalance between the excitatory and inhibitory neurotrans-
mitter systems. In HI, recent studies have provided not only
insight into the time course of injury evolution both in animals
and humans, but have demonstrated a greater role of oxidant
stress and inflammation. The role for inflammation has been
derived from epidemiologic data, which has linked inflamma-
tory mediators with cerebral palsy. The interplay of cytokines

and HI can worsen an injury, as suggested by cytokine levels
that when elevated were significantly predictive of the devel-
opment of cerebral palsy. Infants born to mothers with chorio-
amnionitis have high levels of IL-6, and those who develop
hypoxic ischemic encephalopathy or seizures have signifi-
cantly higher concentrations of IL-6 and IL-8 at 6 h (19). The
spectrum of neurologic abnormalities correlated with increas-
ing cytokine concentration. These and other data suggest that
inflammation may be in the causal pathway as an antecedent of
cerebral palsy. Whether this is reactive or causal is not cur-
rently fully known.
The intrinsic mechanisms of autoregulation and the vulner-

ability of the white matter vary in relation to gestational age.
Experimental administration of glutamate agonists acting on
NMDA or AMPA/kainate receptors causes a pattern of brain
damage that is related to the stage of brain maturation. Lesions
induced with ibotenate (glutamate agonist acting on NMDA)
mimicked several brain lesions observed in human fetuses and
neonates, including neuronal migration disorders, polymicro-
gyria, cystic PVL, and HI (20–22). Based on recent findings, it
is possible that, in preterm infants, transient expression of
NMDA receptors by white matter macrophages could partici-
pate in the vulnerability of the PVWM to perinatal insults
(23,24). Furthermore, the vulnerability of oligodendrocytes to
glutamate agonists activating AMPA or AMPA-kainate recep-
tors has been reported (9,23–25). These agonists produce
PVWM lesions mimicking human PVL (23,25), and intrace-
rebral injection of AMPA agonists induces massive death of
oligodendrocytes in the PVWM (25) as well as suppression of
oligodendroglial gene expression (26). The role inflammatory
cytokines remains controversial in brain injury of preterm
infants (27), but in animal models, IL-1�, IL-6, IL-9, or tumor
necrosis factor-� seem to play a role (28–33). Furthermore,
toxic effects of oxygen, various neonatal intensive care unit
medications, environment, and stress have been shown in the
preterm developing brain (30).
In summary, the extent of injury to the developing brain and

the different vulnerability at different stages of development
have been described. Studies have identified potential targets
for protection and repair aimed at both neurons and
oligodendrocytes.
Potential therapies. Many investigations have been per-

formed trying to identify potential protective therapies, based
on the pathogenesis of injury, including maintenance of energy
stores or the integrity of the neuronal membrane such as
hypothermia, magnesium, fructose 1–6-bisphosphate, antioxi-
dants, and inhibition of degradative exzymes (xanthine oxi-
dase), microglial activation, and NO (31–50). It has been
reported that IL-10 blunts the toxic effect of IL-1� pretreat-
ment (31), and that therapeutic targeting of mast cells with
inhibitors of mast cell degranulation and antihistamine drugs
are protective in neonatal murine brains exposed to IL-9 before
ibotenate excitotoxic insult (32, 33). Allopurinol (a xanthine
oxidase inhibitor), in a neonatal rat model of HI, completely
protected brain damage from severe neuronal cell loss (34) and
produced a beneficial effect on free radical formation, cerebral
blood volume, and electrical brain activity without side effects
in neonates treated with 40 mg/kg (35), but further studies are
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needed. An inhibitor of NO (NG-nitro-L-arginine) given to
neonatal rats 1.5 h before an HI insult had a highly neuropro-
tective effect, elegantly demonstrating the neuronal toxicity of
NO after cerebral ischemia (36), and a neonatal neuronal NO
synthase deficient mice showed a significant reduction in cortical
damage after cerebral ischemia compared with the wild type (37).
Antepartum use of magnesium sulfate is associated with

lower risk for CP or mental retardation (38,39). Postnatal
magnesium at 250 or 450 mg/kg has yielded conflicting ben-
eficial and adverse effects like hypotension and respiratory
depression (40,41). Magnesium inhibits NMDA receptors and
seems to block the activation of NO after cerebral ischemia
(42), and clinical trials are underway. Fructose 1– 6-
bisphosphate, an intermediary of metabolism, has been found
of value in different models (43,44), more so when combined
with hypothermia (44). The induction of whole-body hypother-
mia and selective head cooling have raised interesting possi-
bilities for neuroprotection from cerebral ischemia and have
recently been reviewed elsewhere (11,14). Clinical safety stud-
ies in newborn infants after perinatal asphyxia have shown no
harmful side-effects (45–47), and results of larger clinical
studies that are close to completion or in press (48,49) will
provide more detailed information about clinical efficacy and
safety.
Therefore, manipulation of oxidant, antioxidant, and cell death

pathways and improving the understanding of the maturational
changes in developmental brain biology may lead to additional
strategies for protection and repair of brain injury (50).

EPO AS A NEUROPROTECTANT IN INJURY TO
THE DEVELOPING BRAIN

The protective effect of exogenously administered Epo has
received much attention for adult ischemic disease, and prom-
ising data are emerging in perinatal models. We summarize the
biologic role of Epo, current findings on its short- and long-
term protective properties in the developing brain, signal trans-
duction systems modulated by Epo, and mechanisms by which
Epo may produce protection in the developing brain.
Biologic roles of Epo. Epo is a pleiotropic cytokine origi-

nally identified for its role in erythropoiesis. It is a 34-kDa
glycoprotein that functions as a main regulator of erythropoi-
esis initially thought to be exclusively produced in fetal liver
and adult kidney (51). The pleiotropic functions of this hor-
mone include modulation of inflammatory and immune re-
sponse, direct hemodynamic and vasoactive effects, and proan-
giogenic effects by interaction with vascular endothelial
growth factor and its ability to stimulate mitosis and motility of
endothelial cells. Recently, Epo and EpoR were found to be
expressed by other tissues, including the nervous system (52–
54). Epo has tissue-specific regulation and multiple actions in
the CNS. Different cell types (neurons, glial cells, and endo-
thelial cells) in the nervous system produce Epo and express
EpoR, and both have been identified in specific areas of the
embryonic, fetal, and adult brains of rodents, nonhuman pri-
mates, and humans. Epo and EpoR expression change signif-
icantly during brain development. High EpoR expression has
been found in embryonic mouse neural tissue and brain, with a
significant decrease (100-fold reduction after birth) during

development and maturation of the brain (52). Additionally,
the production of Epo in the human nervous system is elevated
during gestation and is reduced after birth (53). Additionally,
Epo is a general morphogen and inducer of neurogenesis
during early development (54,55). These findings indicate the
importance of the Epo/EpoR system in neurodevelopment.
Activation of Epo and its receptor. Epo gene expression in

most tissues, including the brain, is regulated by a variety of
stressors, including hypoxia (56). It has been demonstrated that
astroglial expression of Epo is greatly enhanced by hypoxia at
the level of mRNA (57). Both Epo and EpoR mRNA are
inducible by hypoxia in hippocampal neuronal cultures (58).
Therefore, as with Epo production in the kidney and fetal liver,
the effect of hypoxia on Epo production in neuronal cells is
regulated in part via the transcriptional activator hypoxia-
inducible factor-1. In vivo hypoxia also stimulates Epo and
EpoR mRNA expression in the hippocampus of adult rats
(58,59) and in the monkey and human brains (60). Moreover,
the middle cerebral artery occlusion produces an induction of
EpoR gene expression in the ischemic penumbra (61), and the
temporal and spatial cellular expression of Epo and EpoR with
the evolution of a cerebral infarct after focal permanent isch-
emia in adult mice have been described (62). In addition to a
basal expression of Epo in neurons and astrocytes, a postisch-
emic Epo expression has been localized specifically to endo-
thelial cells, microglia/macrophage-like cells, and reactive as-
trocytes (62). In normal adult human brain, weak Epo/EpoR
immunoreactivity is mainly neuronal (63); however, after acute
ischemic injury in adult human brain the expression of EpoR is
up-regulated in blood vessels, neurons, and astrocytes and
remains increased in reactive glia in older ischemic infarcts
(�18 d after stroke). The pronounced up-regulation of Epo/
EpoR in adult human ischemic/hypoxic brains underlines their
role as an endogenous protective system. In a reproducible
experimental model of neonatal focal ischemia in the rat (64),
we recently found that EpoR density was significantly in-
creased on the neurons, the microglia/macrophage, and the
endothelium of blood vessels, but not on the astrocytes in the
ischemic cortex and striatum of P7 rats after focal stroke (65).
Moreover, about 50% of EpoR-positive cells were also positive
with terminal deoxynucleotidyltransferase-mediated 2'-
deoxyuridine 5'-triphospate-biotin nick end labeling (TUNEL)
(65). Therefore, the induction of both Epo and EpoR gene
expression by hypoxia and ischemia suggest that Epo could act
on the CNS as a neurotrophic and protective factor.
In vitro neuroprotective effects of Epo. A growing body of

literature indicates that Epo protects cultured neurons against
various stressor-induced injuries. It has been shown that Epo
protects primary cultured hippocampal and cortical neurons
against glutamate toxicity (62,66,67). Epo also ameliorates
hypoxia and glucose deprivation-induced neuronal damage and
reduces the toxic effects of a glutamate agonist on cultured
neurons (68). Additionally, Epo protects cultured hippocampal
neurons against hypoxia-induced neuronal death and inhibits
the serum deprivation- or kainic acid-induced apoptosis of
cultured neurons (59). A continuing search for factors that can
increase neurogenesis show that Epo is a promising candidate
capable of regulating the production of neuronal progenitors by
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neural stem cells both in cell culture and in situ in the adult
CNS (69). The up-regulation of Epo in the CNS after hypoxia
supports a role for Epo in the brain’s response to injury not
only acutely after injury (70), but in repopulating injured areas
as well (69). Moreover, Epo attenuated neuronal damage
caused by chemical hypoxia (induced by rotenone and 2-de-
oxyglucose) at lower extracellular concentrations (10�4–10�2

U/mL) than were previously considered (71). Recently, it has
been reported that Epo protects cerebrocortical neurons from
human immunodeficiency virus/gp120-induced damage (72).
These in vitro results provide direct potential relevance to
Epo’s in vivo effects.
Short- and long-term beneficial effects of Epo in experi-

mental perinatal models. Several studies in perinatal models
have recently demonstrated protective effects of Epo when Epo
was administered before producing the injury (73–78). In the
first of such studies published in 2003 (73), the infarct volume
and apoptotic neuronal death were improved in a newborn rat
HI brain injury model with intraperitoneal Epo treatment (1000
U/kg). The same year, additional reports showed a neuropro-
tective effect in the same HI rat model (74) and a reduction in
infarct size in mice treated with Epo 24 h before experimental
infarction (75). When used at very high doses, up to approxi-
mately 20,000–30,000 U/kg (76) starting 24 h before experi-
mental neonatal HI injury in the rat and followed by daily
dosing, Epo prevented HI-induced DNA fragmentation (77). It
has also been found that Epo prevents intrauterine ischemia
reperfusion–induced fetal brain damage in rats (78). Impor-
tantly, a study has reported beneficial effects with Epo gene
therapy. A single intravenous injection of naked plasmid con-
taining Epo cDNA driven by cytomegalovirus promoter given
to hypoxic ischemic infant rats increased Epo levels, which
peaked at 1 d and lasted for 14 d (79). In our model (64), three
Epo doses were given after a focal ischemic stroke in the
region supplied by the middle cerebral artery. This signifi-
cantly reduced the mean infarct area, the mean infarct volume,
and the number of TUNEL-positive cells in the ipsilateral
ischemic cortex in a dose-dependent manner (80), providing
more practical meaning to Epo treatment for stroke in human
neonates. Of the three doses studied, the most useful dose to
decrease the lesion size, protect the neonatal brain against focal
cerebral ischemic insult, and attenuate the effects of stroke in
neonatal rats with FCI was 1000 U/kg (80).
A recent report has shown that Epo administration at a single

dose immediately after HI injury significantly improves long-
term spatial memory deficits at 20 wk and reduces the infarct
volume at 21 wk after HI in P7 rats (81). More importantly, the
brain in the Epo-treated animal shows slight hypotrophy in the
ischemic hemisphere whereas the brain in the saline-treated
animal exhibits severe atrophy and cortical cavities at 21 wk
after HI. Also, our unpublished data have shown that the
beneficial effects of Epo given post FCI injury in reducing
infarct area and volume can last for 12 wk after FCI, and a very
recent study also shows significant improvement in long-term
outcome (82).
Collectively, this evidence suggests that Epo may provide a

new approach to the treatment of a variety of CNS disorders in
adults and children and could become a therapeutic agent in

perinatal asphyxia and stroke and in the prevention of injury in
the premature developing brain.
Mechanisms of action of Epo. The biologic effects of Epo

in the CNS involve activation of its specific receptor and
corresponding signal transduction pathways. Although the pre-
cise molecular mechanism underlying the neuroprotective ef-
fects of Epo has not been completely elucidated, less so in the
developing brain, Epo may act at multiple levels. The potential
protective effects include generation of neuronal antiapoptotic
factors and antiapoptotic mechanisms (83), prevention of oxi-
dative damage (78) with direct antioxidant effects via activa-
tion of antioxidant enzymes and inhibition of lipid peroxida-
tion, decrease of NO-mediated injury by inhibition of NO
production (84), stimulation of angiogenesis (85), modulation
of neurogenesis (69), reduction of glutamate toxicity (57), and
reduction of inflammation with antiinflammatory effects (86).
The mechanisms that have been involved in Epo-induced
neuroprotection are summarized in Table 1, and the potential
actual antiapoptotic mechanisms of Epo are shown in Figure 1.
In non-neuronal cells, the evidence indicates that the antiapop-
totic effects of Epo are mediated by activating Jak2, leading to
tyrosine phosphorylation of Stat5 and the up-regulation of
antiapoptotic genes (87). Jak2 and Stat5 are expressed in
various brain regions including cortex, hippocampus, and stri-
atum during embryonic and postnatal stages (87), suggesting
these protein kinases may be involved in brain development.
Epo attenuates glutamate release from cultured cerebellar gran-
ule cells and hippocampal neurons, protecting hippocampal
neurons from ischemic neuronal damage through activation of
Jak2 (88) and prevents cultured cerebrocortical neuronal death
by triggering cross-talk between Jak2 and NF-�B signaling
pathways (83). We recently found that these events also occur
in neonatal brains with FCI. Exogenous Epo at 1000 U/kg
activated p-Jak2, p-Stat5, and the anti apoptotic gene Bcl-xL in
the ischemic cortex of neonatal rats at 1 and 3 d after FCI (80).
On the other hand, NF-�B expression in the cortex was not
altered by FCI or Epo treatment from 1 to 7 d after FCI (80).
Whether Epo treatment activates NF-�B’s transcriptional acti-
vating function in the developing brain needs to be verified.
These findings provided insights regarding molecular mecha-
nisms involved in the neuroprotection of Epo in the developing
brain and suggest that Epo enhances neuronal survival through
activation of Jak2-Stat5 pathways, which leads to activation of
down-stream cellular neuroprotective genes like Bcl-xL.

Table 1. Possible mechanisms of Epo-induced neuroprotection

• Prevention of glutamate-induced toxicity
• Inhibition of apoptosis
• Antiinflammatory effects
• Antioxidant effects
• Inhibition of NO production
• Stimulation of angiogenesis
• Modulation of neurogenesis
• Prevention of the loss of autoregulation of cerebral blood flow
• Maintenance of mitochondrial membrane potential (by activating protein
kinase B)

• Inhibition of caspase-3 formation and cytochrome c release
• Stimulation of survival promoting pathways such as NF-�B, Bcl-xL,
Akt1, heat shock protein 27, superoxide dismutase (SOD), and inhibitor
of apoptosis protein (IAP), extracellular signal-regulated kinase (ERK)
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Receptor responses for Epo’s neuroprotection. It is known
that binding of Epo to its receptor ultimately results in the
activation on cellular downstream signals, but an important
issue to be addressed is whether the neuroprotective effects of
Epo are always initially triggered by its binding to its receptor.
Interestingly, hematopoietic effects of Epo are mediated by the
homodimeric EpoR, whereas the receptor complex mediating
its neuroprotective effects differ with respect to apparent affin-
ity for Epo, molecular weight, and associated proteins (51).
Additionally, it has been reported that a region of Epo not
within the classical EpoR binding domains may be associated
with protective effects in the CNS (89) and that carbamylated
Epo or certain Epo mutants that did not bind to the classical
EpoR were still cytoprotective in vitro and neuroprotective in
vivo (90). These observations suggest that another receptor is at
least partially responsible for the tissue-protective actions of
Epo. Actually, Epo membrane receptors are each composed of
a unique � subunit (the classical EpoR, which is required for
erythropoiesis) and a common � subunit (�cR, which is not
required for erythropoiesis). Recent data support a concept that
EpoR and �cR comprise a tissue-protective heteroreceptor
(91). Interestingly, in our recent experiments in Epo-treated
pups, we did not detect any significant alteration in the classi-
cal EpoR expression in the ischemic cortex from 1 to 7 d after
FCI compared with vehicle-treated pups (80). However, further
experiments are needed to determine whether exogenous Epo
binds to its receptor within the first 24 h after FCI, preventing
subsequent Epo-R up-regulation, or if the classic Epo-R is not
involved in mediating the neuroprotective effects of exogenous
Epo. Additionally, in a neurotoxic model induced by the
NMDA receptor antagonist dizocilpine (MK801) in P7 rats,
Epo protected the neonatal brain but did not alter EpoR mRNA

levels in the rats given MK801 (92). Furthermore, in a neonatal
HI model, Epo application for 3 d did not down-regulate EpoR,
but rather prolonged EpoR expression in the cortex (76). Thus,
the protective effect of exogenous Epo may be partly attributed
to restoration of endogenous Epo signaling and may not be
associated with the classical EpoR.
Potential for adverse events with Epo treatment. The ap-

plication of Epo for neonates with perinatal asphyxia, stroke, or
those preterm with complicated postneonatal courses has not
yet been tested clinically. Of concern is that Epo administration
may have detrimental effects on neuronal development inas-
much as Epo induces the proliferation of neuronal stem cells.
This may have a negative impact on multipotent progenitor
cells because we still need to know their ultimate purpose and
role (69). Furthermore, Epo influences apoptosis, which may
be an integral component of normal brain development. These
issues have not been studied experimentally nor in animals.
However, many preterm infants have been studied in large
clinical trials and treated with Epo for anemia of prematurity
(93–95)
Using high doses of Epo also bears the risk of unwanted

effects linked to the chronic overstimulation of EpoR in the
bone marrow and other sites. As a procoagulant, Epo can
induce coagulation disorders. Adult patients with polycythemia
have increased risk for thromboembolic phenomena; however,
it has been reported that transgenic mice overexpressing Epo
may even be protected against thrombotic disease by Epo-
induced erythrocytosis (96). Additionally, long-term conse-
quences of Epo, like red blood cell aplasia, could be derived
from the development of Epo antibodies. This has not been
described in neonates, but it has been reported in adult patients
(97). Other potential side effects of exogenous Epo include
polycythemia, proangiogenic undesired effects, switch of en-
dogenous Epo production, hypertension, edema, pyrexia, and
gastrointestinal effects, like vomiting, diarrhea, and necrotizing
enterocolitis. The clinical trials of Epo in infants (93–95) have
neither reported thrombotic events, red blood cell aplasia,
development of Epo antibodies nor severe side effects, but the
individual doses used are relatively low, and Epo for anemia of
prematurity is usually not begun early in postnatal life. In a
long-term study, there were no detectable neurodevelopmental
deleterious effects of Epo (98), but unpublished reports suggest
poor visual outcome of children treated with Epo for anemia of
prematurity.
Biodistribution barriers. The ability of Epo to penetrate the

BBB is central to its application as a neuroprotective agent in
clinical settings. Transport of protein to the brain’s extracellu-
lar environment via systemic blood supply generally does not
occur due to the negligible permeability of the intact brain
capillary endothelial wall. Raised concentrations of Epo have
been found in the cerebral spinal fluid of infants suffering from
ischemic brain injury, when the BBB is altered (99). Interest-
ingly, Epo concentrations were not raised in children with
meningitis, suggesting that Epo production may be inhibited by
pro-inflammatory cytokines (99). When given at doses appro-
priate for erythropoiesis (200–400 U/kg per dose), Epo does
not cross the BBB in a detectable amount (100). However, Epo
given systemically produces cerebrospinal fluid concentrations

Figure 1. The intracellular signaling events of Epo after binding to EpoR in
neuronal cells is shown in a schematic illustration. Epo activates phosphory-
lation of Jak-2 via binding to its receptor, then mediates phosphorylation of
Stat-5 and activates NF-�B. Stat-5 translocates to the nucleus and binds to
DNA, promotes Bcl-xL and Bcl-2 expression, and finally inhibits caspase-3
activation. On the other hand, NF-�B promotes the expression of neuropro-
tective genes such as IAP and SOD after it translocates to the nucleus. IAP,
inhibitor of apoptotic protein; SOD, superoxide dismutase.
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ranging from 50 to 350 mU/mL at 3–3.5 h after injection in
adult rodents and nonhuman primates (100) and crosses the
BBB raising CSF levels by 100 mU/mL in 30 min when given
in suprapharmacological doses (2000–5000 U/kg per dose)
(70,101,102). The pharmacokinetics of systemically adminis-
tered Epo under conditions of the CNS injury, and disruption
of the BBB still needs to be clarified. There is also controversy
as to whether Epo crosses the placenta. It is described that Epo
does not cross the placenta, and that fetal kidneys, liver, and
placenta express the Epo gene (103). However, intraperitoneal
injection of Epo in pregnant rats has been shown to be neuro-
protective (104). To pharmacologically exploit and fully real-
ize the therapeutic benefits of exogenous Epo agents in the
CNS dysfunction, mechanisms of action and the potential
impact of biodistribution barriers need to be elucidated.

PROMISING OUTLOOK FOR CLINICAL
EVALUATION OF EPO IN INJURY TO THE

DEVELOPING BRAIN

Given its multiple biologic functions in the CNS and the fact
that it has already been found beneficial in adults with ischemic
stroke in a clinical proof of concept study (101), Epo can be
considered a novel clinical agent potentially useful in injury to
the developing brain. Even though in a small trial (101) using
33,000 U/d for 3 d and in clinical administration in patients
with anemia and chronic kidney diseases Epo has been well
tolerated and safe, caution must be taken in future clinical
applications of Epo due to the potential adverse events men-
tioned above. To limit potential toxicity and to remove eryth-
ropoietic activity, derivations of Epo, such as asialoEpo, car-
bamylated Epo and neurotrophic sequences of Epo, have been
developed. Whether Epo, or any of its derivatives that are
tissue protective but not erythropoietic, by itself or in combi-
nation with other therapies will be both safe and of clinical
value in perinatal brain injury remains to be determined in
clinical trials. Before institution of these trials, it is necessary
to better understand dosing, pharmacokinetics, and window of
effectiveness, and to further elucidate mechanisms of action
and the role, if any, of biodistribution barriers. Clinical trials
should be randomized and masked, and be designed with
sufficient sample size to evaluate effects of Epo in prevention
and treatment as well as safety and optimal dosage and dosing
interval. A pharmacokinetic study (105) has shown that pre-
term infants compared with adults have greater Epo plasma
clearance and volume of distribution, shorter fractional elimi-
nation times, nonlinear elimination, and a half-life 40% that of
adults after a dose of 500 U/kg. However, further information
is necessary to determine adequate dosing and interval and
whether “high doses,” which may be protective to the devel-
oping brain, are safe in the newborn.
Potential future trials may be of preventive nature and

include premature infants at very high risk for IVH, PVL, and
severe long-term sequelae. Randomization should be early and
Epo once per day or placebo be started by 4–6 h of age with
doses possibly ranging between 1000–5000 U/kg/d for the first
72–96 h. In term infants with asphyxia and HI, Epo can be
evaluated by itself or in combination with potentially effective

therapies, like hypothermia. In this potential trial, inclusion
criteria should be clearly defined and Epo at similar daily doses
started early and continued for 72–96 h. For therapy in stroke,
seizures, trauma, meningitis, or other injuries, infants need to
be identified, entered, and treated as early as possible, perhaps
with doses in the higher end and for at least 4–7 d. In all these
studies, outcome variables should include meticulous neuro-
imaging, detailed long-term neurodevelopmental assessment
and thorough evaluation of undesired adverse effects.

CONCLUSION

In summary Epo is a potential neurotherapeutic agent that
opens a novel way for clinical investigations in protection to
the developing brain. Epo seems to affect common initiating
mechanisms, like cerebrovascular autoregulation and cerebral
ischemia, as well as common downstream mechanisms and
free radical attack and it is suggested that both neuronal and
oligodendroglial injury could be ameliorated. Further clinical
value in perinatal brain injury still needs to be determined.
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