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Duchenne muscular dystrophy (DMD) is a progressive, le-
thal, muscle wasting disease that affects 1 of 3500 boys born
worldwide. The disease results from mutation of the dystrophin
gene that encodes a cytoskeletal protein associated with the
muscle cell membrane. Although gene therapy will likely pro-
vide the cure for DMD, it remains on the distant horizon,
emphasizing the need for more rapid development of palliative
treatments that build on improved understanding of the complex
pathology of dystrophin deficiency. In this review, we have
focused on therapeutic strategies that target downstream events
in the pathologic progression of DMD. Much of this work has
been developed initially using the dystrophin-deficient mdx
mouse to explore basic features of the pathophysiology of dys-
trophin deficiency and to test potential therapeutic interventions
to slow, reverse, or compensate for functional losses that occur in
muscular dystrophy. In some cases, the initial findings in the mdx
model have led to clinical treatments for DMD boys that have
produced improvements in muscle function and quality of life.
Many of these investigations have concerned interventions that

can affect protein balance in muscle, by inhibiting specific pro-
teases implicated in the DMD pathology, or by providing ana-
bolic factors or depleting catabolic factors that can contribute to
muscle wasting. Other investigations have exploited the use of
anti-inflammatory agents that can reduce the contribution of
leukocytes to promoting secondary damage to dystrophic muscle.
A third general strategy is designed to increase the regenerative
capacity of dystrophic muscle and thereby help retain functional
muscle mass. Each of these general approaches to slowing the
pathology of dystrophin deficiency has yielded encouragement
and suggests that targeting downstream events in dystrophinopa-
thy can yield worthwhile, functional improvements in DMD.
(Pediatr Res 56: 831–841, 2004)
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Duchenne muscular dystrophy (DMD) is the most common,
lethal, inherited disease of childhood, affecting 1 of 3500 boys
born worldwide. This too-common disease results from muta-
tions in the dystrophin gene that lead to either a complete loss
or a loss of critical functional domains of the membrane-
associated protein, dystrophin (1). Loss of dystrophin from the
cell membrane results in a mechanically weaker membrane that
is more easily damaged during muscle contraction. Muscle
inflammation, necrosis, and fibrosis occur as direct or indirect
consequences of dystrophin deficiency so that DMD patients
experience severe and progressive loss of muscle mass and
function. Typically, DMD patients are limited to wheelchair

mobility by 9–12 y of age, and die by the late teens or 20s,
often because of complications that are secondary to respira-
tory muscle wasting (2).
Although the ultimate cure for DMD will lie in the stable

and systemic introduction of a functional dystrophin gene into
the muscles of DMD boys, it is unpredictable when therapeutic
strategies based on gene therapy or on the transplantation of
stem cells or muscle precursor cells will be clinically available.
In the interim, improved therapeutics to protect muscle mass
and function could improve the quality and length of life for
DMD boys, by reducing secondary features of the pathologic
progression of dystrophin deficiency. Several observations em-
phasize that secondary features of dystrophin deficiency may
be of great importance in determining the severity of the
disease. For example, null mutation of dystrophin produces an
early-onset, progressive disease in humans and dogs that
greatly reduces life expectancy (3,4) but causes a late-onset
progressive pathology in mice, so that dystrophin-deficient
mice live a nearly normal lifespan (4). Remarkably, dystrophin
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deficiency produces muscle hypertrophy rather than atrophy in
cats (5). Severity of pathology can also differ between dystro-
phin-deficient muscles in the same individual, with extraocular
muscles spared pathology and limb muscles severely affected
in humans (6), and diaphragm muscles in mice experiencing an
early-onset, progressive pathology that differs from the late-
onset of progressive pathology seen in limb muscles (7) (Fig.
1). Together, these muscle-type and species-specific differ-
ences in the pathology of dystrophinopathy show that the loss
of dystrophin per se is not sufficient to explain the course,
severity, or lethality of muscular dystrophy, which emphasizes
the potential importance of epigenetic factors. Thus, control of
secondary pathologic features in DMD has the potential to
reduce the severity of muscular dystrophy, and possibly add
years of mobility and longevity.

PROTECTING MUSCLE MASS IN
DYSTROPHINOPATHIES

Increasing Protein Synthesis

Anabolic steroids. Loss of functional muscle mass is a
primary defect that reduces quality and length of life in DMD.
Defects in gait and posture that are attributable to muscle
weakness appear between 3 and 6 y of age, after which muscle
strength and functional muscle mass decline progressively and
continuously until about 11 y of age (8,9). This loss of muscle
is accompanied first by a loss of the ability to climb stairs, then
lost ability to arise from supine to standing, and then inability
to walk even short distances. Conserving muscle mass in DMD
patients would slow this functional decline, and would also
preserve potential for future gene therapies or stem cell ther-
apies, which require availability of target muscle cells.
Treatment of DMD with anabolic steroids has provided an

obvious, and perennially explored approach for protecting
muscle mass. Synthetic steroids have been tested in DMD
boys, in hopes of identifying agents that can provide desirable

anabolic effects with minimal androgenic side-effects. How-
ever, the early attempts to identify an anabolic steroid with
therapeutic promise for DMD were discouraging. Noreth-
androlone (10) and methandrostenolone (11) were found to
cause initial, modest improvements in muscle strength, but this
was accompanied by androgenic side effects, but even worse,
cessation of treatment led to a rapid and severe deterioration in
muscle mass and function. Subsequent examination of 1-meth-
yl-�-androstenolone treatments of DMD patients (12) showed
that daily administration of 0.25 mg/kg for 1 y yielded no
apparent improvement in function; three of five DMD boys
who were ambulatory at the beginning of the treatment period
lost their ability to walk within the first 2 mo of the study, and
the other two patients lost ambulation by mo 7. Although no
serious toxic effects were observed, androgenic effects such as
priapism, acne, and growth of pubic hair resulted from the
treatment.
More recent studies have shown greater promise for the

anabolic steroid oxandrolone for use in the treatment of DMD.
Oxandrolone may help protect muscle mass through two in-
teracting pathways. Not only can it bind to androgen receptors,
to activate transcription of genes involved in anabolic path-
ways, but it also antagonizes cortisol binding to glucocorticoid
receptors to decrease catabolic pathways (13). Oxandrolone
has been used with success in increasing muscle mass and
strength in HIV patients (14) and burn victims (15), and it
produces relatively minor androgenic side-effects in children
(16). Importantly, the increase in lean body mass that is
achieved by burn victims receiving oxandrolone is retained for
at least 6 mo after cessation of treatment (15), which suggests
that DMD patients may not experience the rapid loss of muscle
mass that occurs at the end of treatment with other anabolic
steroids.
Oxandrolone can produce significant improvements in mus-

cle function in DMD patients. Quantitative muscle testing of
elbow flexion and knee extension showed that DMD patients
receiving daily oxandrolone over a 6-mo trial were stronger
than control subjects who received placebo (17). However,
function testing (e.g. time to climb stairs) showed no differ-
ences between the treated and control groups. No significant,
adverse effects were reported, and the height and weight of the
treated boys increased linearly during the study, as occurred in
placebo-control subjects. Although the beneficial effects of
oxandrolone treatment were not large, the ability to achieve
these benefits without the negative effects on growth provides
some advantage over corticosteroid use, which can signifi-
cantly slow normal growth.
Growth factors. An alternative approach for shifting dystro-

phin-deficient muscle toward a positive protein balance has
tested whether systemic administration of growth factors can
maintain muscle mass and function. Based on early success
that showed exogenous GH can cause a positive nitrogen
balance in myotonic dystrophy patients (18), the possibility
that GH could have similar effects on DMD boys was tested
(19). However, 12 d of GH treatment to seven DMD patients
unexpectedly produced undesired, catabolic effects. Those
findings coupled with a subsequent observation that a DMD
patient with GH deficiency had a relatively benign phenotype

Figure 1. Sections of skeletal muscle from healthy, control mouse (A) and
dystrophin-deficient, mdx mouse (B). The control mouse muscle shows close-
packing of muscle fibers that are nearly uniform in diameter. The dystrophic
mouse muscle shows that the muscle fibers have been replaced by connective
tissue. Dystrophic fibers are scattered, highly variable in size, and show
disrupted cytoplasmic structure, which are signs of previous and ongoing
pathology. Bar � 60 �m.
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(20) suggested that inhibiting GH could reduce the pathology
of DMD. However, subsequent clinical studies have produced
mixed results. Nine DMD patients receiving a GH inhibitor,
mazindol, daily for 6 mo showed no improvement in muscle
function (21), although another study of two identical twins
with DMD showed much higher levels of motor function in the
twin receiving mazindol for 12 mo than the sibling receiving
placebo (22). Conversely, daily administration of mazindol to
five DMD patients for 3 mo yielded no improvement in
function but did produce adverse effects such as irritability,
sleep disturbances, and elevated heart rate (23). In addition, a
subsequent investigation showed that mazindol treatment of 83
boys with DMD for a 12-mo trial did not slow the progression
of muscle weakness, but did slow gain in height of the boys
(24). More recently, the possibility that exogenous GH could
reduce DMD pathology has been revisited, with a particular
focus on a potential ameliorative effect on DMD cardiomyop-
athy (25). However, only slight improvement in cardiac sys-
tolic function and no improvement in skeletal muscle function
were observed after 3 mo of treatment. Collectively, these
mixed findings indicate that perturbation of GH concentration
in DMD patients does not yield a predictable or clearly bene-
ficial effect.
Although manipulations of GH levels in DMD patients do

not appear to have great promise as a therapeutic treatment for
DMD, IGF-1 may have potential for protecting muscle mass
and function in DMD. Observations that IGF-1 functions as a
potent anabolic agent for skeletal muscle in vivo (26,27) by
stimulating protein synthesis (28,29) and by promoting regen-
eration (30) suggested that IGF-1 could also have beneficial
effects on dystrophic muscle. Thus far, experimentation on the
mdx mouse has provided encouragement for a potential ther-
apeutic use for IGF-1 in DMD. IGF-1 delivery to mdx muscle
through the expression of a muscle-specific transgene (31) or
by delivery with a miniosmotic pump (32) significantly in-
creased muscle mass (31,32), increased specific force in dia-
phragm muscle (32), and induced muscle hyperplasia (31).
These findings indicate that increased delivery of IGF-1 to
dystrophic muscle can reduce pathology by shifting muscle
toward a positive protein balance and by stimulating regener-
ation. In addition, subcutaneous injections of IGF-1 into mdx
mice reduced exercise-induced weakness (33), which suggests
that the systemic delivery of IGF-1 could have beneficial
effects in the treatment of muscular dystrophy.
Although no detrimental effects of IGF-1 treatments of mdx

mice were noted, IGF-1 receptors are expressed on numerous
cell types that could potentially experience disruptions of
normal homeostasis as a consequence of elevated IGF-1. Be-
cause production of collagen by fibroblasts is increased by
IGF-1, there was a particular concern that the pathologic
fibrosis of dystrophin-deficient muscle would be exacerbated
by IGF-1 treatments. On the contrary, overexpression of IGF-1
reduced fibrosis of mdx muscle (31), suggesting this could
provide a further, unanticipated benefit of IGF-1 treatments.
IGF-1 has already been tested clinically in the treatment of
amyotrophic lateral sclerosis, and found to produce no clini-
cally significant, negative side-effects during 7- and 9-mo
clinical trials (34,35), which supports the possibility that it

could be used safely for treating DMD. However, other exper-
imental and epidemiologic findings emphasize that long-term
IGF-1 treatments should be used with caution, especially in
children. IGF-1 can increase the proliferation and metastasis of
cancer cells, at least in model systems (36), and there may be
a significant relationship between levels of circulating IGF-1
and occurrence of cancer in humans (37,38).

Decreasing Proteolysis

Inhibiting calcium-dependent proteases. Additional strate-
gies for protecting muscle mass in muscular dystrophy have
targeted proteolytic systems that are important in dystrophi-
nopathies. In addition to slowing catabolic processes, antipro-
teolytic strategies may provide unpredicted benefits by reduc-
ing the degradation of specific substrates, the loss of which
may contribute significantly to defects in muscle function. A
potential role for calcium-dependent proteases (calpains) in the
progression of dystrophinopathies has been anticipated for
years, even before the discovery of dystrophin. Early studies
noted the influx of extracellular calcium into dystrophin-
deficient muscle (39–41), leading to speculations that the
elevated calcium could promote muscle death by activating
proteases. Further investigations showed that calpains in ne-
crotic fibers of mdx mice have higher levels of activation (42),
but only recently have experimental data addressed whether the
activation of calpains in dystrophic muscle were important in
muscular dystrophy. Generation of mdx mouse lines in which
there was a muscle-specific overexpression of calpastatin, the
endogenous inhibitor of calpains, showed that transgene ex-
pression reduced necrosis in mdx muscle and reduced the size
of muscle lesions (43). In addition, the beneficial effects oc-
curred without reducing the efflux of extracellular marker dyes
(and presumably calcium) into the muscle fibers, which indi-
cated that calpain-mediated pathology in mdx muscle is an
event that occurs downstream of membrane damage (43).
A recent pilot study has suggested that therapies that may

reduce calpain activity in vivo can improve muscle function in
DMD patients. Because �2-adrenergic agonists can increase
calpastatin expression in muscle, reduce the proteolysis of
muscle contractile proteins, and increase muscle mass in mam-
mals (44), Spencer and colleagues (45) tested whether oral
administration of �2-adrenergic agonists to DMD boys could
improve muscle function. After 12 wk of daily, oral adminis-
tration of albuterol, patients showed increased muscle strength
in knee extension and during manual muscle testing, with no
adverse side-effects reported (46). However, no significant
difference in muscle function tests (e.g. time to climb stairs or
rise to standing from a supine position) was observed. Al-
though this investigation suggests that calpain-targeted thera-
peutics can yield benefits for DMD patients, it is possible that
the albuterol-mediated effects may not occur exclusively
through influences on the calpain system. For example, T-
lymphocytes and macrophages promote muscle pathology in
mdx mice (47,48), and �2-adrenergic agonists can inhibit the
activation of T cells and macrophages (49–51).
Inhibiting the ubiquitin/proteasome system. The ubiquitin/

proteasome system is the primary proteolytic system in all
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eukaryotic cells, which can lead to the breakdown of polypep-
tides to small peptides and amino acids. A recent report (52)
presented evidence that the systemic inhibition of the ubiquitin/
proteasome system using the MG-132 protease inhibitor can
diminish pathology in mdx mice. Systemic administration of
the inhibitor was also reported to increase localization at the
muscle cell membrane of the N-terminal portion of dystrophin
(52), which is upstream of the mutation that introduces a
premature stop codon into exon 23 of the mdx dystrophin gene
(53). This suggests that dystrophin has an unidentified domain
that associates with the cell membrane because the domain that
binds �-dystroglycan at the membrane lies within the cysteine-
rich domain encoded by exons 64–67 (54,55). The ability of
dystrophin that lacks its C-terminus and its �-dystroglycan
binding domain to localize at the cell membrane has been
observed previously in DMD patients. For example, one DMD
patient was identified in whom a truncated dystrophin that
lacked everything downstream of exon 50 was expressed and
correctly localized at the cell membrane (56). However, loss of
the C-terminus of dystrophin, and especially the cysteine-rich
domain that binds �-dystroglycan, is associated with severe
pathology in DMD (57,58). These findings in DMD patients
indicate that preventing dystrophin proteolysis may not provide
rescue from pathology unless critical functional domains of the
molecule are spared the effects of the mutation.

DECREASING THE INFLAMMATORY RESPONSE

The aggressive inflammatory response associated with dys-
trophin deficiency, although secondary to the etiology, is a
significant component of the pathophysiology and an attractive
target for pharmacologic therapeutics. Although dystrophin-
deficient muscular dystrophy is not categorized as an inflam-
matory myopathy, immune cells that infiltrate dystrophin-
deficient skeletal muscle promote the pathology in mdx mice.
In vivo, depletions of CD4� or CD8� T cells or macrophages
significantly reduced the pathology in mdx mice, illustrating
the role of those cell types in aggravating the disease (47,48).
Furthermore, mdx mice show increased susceptibility to mast
cell granule-induced damage suggesting a role for mast cells in
the pathology (59). To investigate the feasibility of immuno-
suppressive/anti-inflammatory therapies in DMD, numerous
studies have focused on the role of immune cells and cytokines
in dystrophin deficiency as well as directly testing the efficacy
of anti-inflammatory and immunosuppressive therapies in
patients.

Immunosuppressants

Strong support for the possibility that immune-based inter-
ventions can be beneficial in DMD as well as mdx dystrophy
come from findings on DMD patients receiving the immuno-
suppressant glucocorticoid, prednisone. Prednisone-treated
DMD patients experience a significant delay in the disease
progression that includes prolongation of ambulation, mainte-
nance of strength and function, and a recently documented
delay in or prevention of the development of scoliosis (60).
Prednisone may also be beneficial in preserving ventilatory
function in dystrophin deficiency by attenuating fibrosis of the

diaphragm (61). However, daily prednisone treatment is often
associated with adverse side-effects including weight gain,
suppression of growth, bone demineralization, cushingoid ap-
pearance, hirsutism, and behavioral changes that often prompt
cessation of treatment. Nondaily dosing can reduce these ad-
verse side-effects while still yielding functional benefits
(60,62–65). The benefits of prednisone treatments can also be
optimized by initiating treatment before the onset of functional
decline in DMD patients. Long-term evaluations of DMD
patients who started therapy between 2 and 5 y of age showed
prednisone was well tolerated, beneficial in maintaining and
prolonging function, and elicited more robust responses than
when treatment was initiated in later years (63–65). The
superior treatment effects caused by early treatment have been
attributed to the relatively greater efficacy of prednisone in
maintaining function than recovering function (63–65).
Although prednisone’s clinical efficacy in dystrophin defi-

ciency is unequivocal, the degree to which prednisone’s im-
munosuppressive function contributes to its functional benefits
in vivo is unknown. Quantitative, histologic examination of
dystrophin-deficient tissue shows that prednisone reduces the
infiltration of inflammatory cells into muscle (66,67) and re-
cent micro-array data from prednisone-treated mdx muscle
demonstrates that prednisone down-regulates the expression of
genes involved in the immune response (68). These data
suggest that prednisone’s immunosuppressive function signif-
icantly alters the pathogenic profile of the disease. However,
DMD patients treated with the immunosuppressant azathio-
prine failed to demonstrate clinical improvements similar to
prednisone-treated patients (69), although the concentration of
leukocytes in muscle biopsies from DMD patients treated with
prednisone or azathioprine did not differ significantly (70).
These findings led the investigators to conclude that immuno-
suppression is probably not the primary mechanism of pred-
nisone-induced clinical improvement in DMD. However, aza-
thioprine is not an immunosuppressant per se; it is a purine
analog that inhibits DNA synthesis. Thus, azathioprine can
reduce leukocyte populations by preventing their proliferation,
but it will also inhibit the proliferation of muscle satellite cells
and thereby inhibit muscle repair and regeneration. This latter
effect may explain the lack of clinical improvement in azathio-
prine-treated DMD patients. In addition, prednisone functions
as an immunosuppressant by reducing the expression of genes
involved in leukocyte activation (68), as well as inhibiting their
invasion into tissue. Thus, the level of activation of inflamma-
tory cells in muscles of prednisone-treated DMD patients could
be lower than in azathioprine-treated patients, which may
further account for the functional improvement in prednisone-
treated but not azathioprine-treated patients.
In addition to its immunosuppressive functions, prednisone

may have direct effects on muscle cells that could contribute to
its efficacy in DMD. For example, prednisone can modulate
proteolysis and calcium handling, enhance myogenesis, and
inhibit apoptosis (71–76). The ability of prednisone to have
direct effects on muscle cells is further supported by findings
using Caenorhabditis elegans, which lack an immune system.
A mutant C. elegans line that experienced muscle degeneration
and impaired locomotion was treated with prednisone, which

834 TIDBALL AND WEHLING-HENRICKS



reduced muscle degeneration (77), although improvements in
locomotion were not observed. Prednisone may also directly
effect muscle by increasing expression of utrophin, a dystro-
phin homologue, by increasing the activity of a utrophin
promoter (78). Up-regulation of utrophin could have tremen-
dous importance in the treatment of DMD because utrophin
can compensate for the lack of dystrophin (79). However, a
biopsy from a prednisone-treated patient did not show elevated
utrophin (64), indicating that, at least in that patient, pred-
nisone did not affect utrophin expression.
Deflazacort, an oxazoline derivative of prednisone, is an-

other glucocorticoid immunosuppressant with significant ben-
efits in DMD patients. Not only is deflazacort effective in
maintaining muscle strength and function, but it also improves
pulmonary and cardiac function and attenuates the develop-
ment of scoliosis, which makes it valuable for the treatment of
DMD even after ambulation is lost (80–85). Compared with
prednisone, deflazacort is equally effective in maintaining
strength and function (86) and is generally more tolerable
because adverse side-effects, such as weight gain, are less
severe (82,84–86). Whether deflazacort induces less bone
demineralization than prednisone is not clear. Hand x-rays
showed no difference between prednisone- and deflazacort-
treated patients (86), although dual photon absorptiometry
showed less bone loss in deflazacort patients (87). Nondaily
dosing was tested in an attempt to alleviate the adverse side-
effects from deflazacort treatment and, although the DMD
patients on a lower and intermittent deflazacort-dosing regimen
experienced less growth suppression, functional and strength
benefits were reduced suggesting that daily deflazacort treat-
ment is more favorable (85).
The beneficial effects of prednisone and deflazacort in the

treatment of DMD led to the search for other immunosuppres-
sants that could prove therapeutically useful. The history of
success of cyclosporine as an immunosuppressant following
tissue and organ transplantation suggested that it could also be
valuable in decreasing the immune cell contribution to dystro-
phinopathy. However, current findings concerning the effect of
cyclosporine treatments on dystrophin deficiency are in con-
flict. An initial, open-label, 2-mo trial with cyclosporine-
treated DMD patients was encouraging in demonstrating
strength increases in the single muscle tested (88). However,
the unblinded design of this study could have been influenced
by a placebo effect, though the authors argue against this
because strength increases were observed during electrically
stimulated as well as voluntary contractions. Subsequent clin-
ical trials with cyclosporine produced variable results. How-
ever, cyclosporine treatments in these latter studies were per-
formed in conjunction with myoblast transfer therapy and, in
some cases, intermittent prednisone treatment. The com-
pounded variables could obscure any specific cyclosporine
treatment effects and limit the extent to which conclusions
regarding cyclosporine’s efficacy in DMD can be made (89–
92). Animal studies testing cyclosporine are equally difficult to
interpret. Histologic analyses and strength testing of cyclospor-
ine-treated mdx mice produced no effect (93,94) or a detrimen-
tal effect (95), which may reflect variability in dosing regi-
mens. Studies in which no significant effects were observed

used only 20–50% of the human dosage, which may not have
been sufficient to induce a response (93,94), whereas the study
in which detrimental effects were observed (95) used 600% of
the human cyclosporine dosage.
The conflicting findings concerning the effect of cyclospor-

ine on dystrophinopathy may result, in part, from the broad,
dose-dependent effects of cyclosporine that are independent of
its function as an immunosuppressant. Because cyclosporine
functions by inhibiting calcineurin, and calcineurin mediates
multiple signaling pathways through its phosphatase activity in
multiple cell types, systemic delivery of cyclosporine may
have multiple unpredictable effects, especially in the context of
a progressive, muscle-wasting disease. Contention over
whether calcineurin plays a significant role in the regulation of
the growth of healthy muscle has centered, in part, on questions
concerning the magnitude and frequency of dosing, and the
vehicle used for drug delivery (96,97). Because cyclosporine
has the potential to inhibit muscle growth and regeneration,
under at least some treatment regimens, other immunosuppres-
sants without potential, detrimental effects on muscle could be
better choices for use in DMD patients.

Chinese Herbal Medicines

In the search for novel DMD therapeutics, Chinese herbal
medicines used to treat nonspecific muscle weakness have been
examined. Functional improvements observed in some DMD
patients treated with herbal medicines (63,98) were accompa-
nied by signs of hypercorticism (e.g. weight gain, cushingoid
appearance, hirsutism, and shortness of stature) (98), which
suggested the presence of glucocorticoids that was later con-
firmed by chemical analysis (99). Although some DMD pa-
tients showed promising results with Chinese herbal medicine
treatment, there is a lack of quantitative, clinical data to
confirm those findings. Additionally, because Chinese herbal
medicines are not regulated and their glucocorticoid content is
unknown, there is potential for harmful, toxic side-effects due
to improper dosing.

Cytokine Modulation

TNF-�. Tumor necrosis factor-� (TNF-�) is a cytokine that
is up-regulated in DMD patients (100) and may function as a
mediator of the dystrophic pathology by enhancing the inflam-
matory response and through direct cytotoxicity. Modulating
the bioavailability of TNF-� has proved successful in the
treating of autoimmune diseases such as rheumatoid arthritis
(101), which has suggested that this strategy may also be useful
in controlling inflammatory cell-mediated damage to dystro-
phic muscle. However, modulating TNF-� levels in mdx mice
via genetic removal or by treatment with anti-TNF-� antibod-
ies has produced unpredictable and conflicting results. For
example, null mutation of TNF-� in dystrophin-deficient
(TNF-/mdx) mice worsened diaphragm pathology at 4 wk of
age, although older TNF-/mdx mice showed decreased quad-
riceps pathology and improved ventilatory function (102,103).
Furthermore, mdx mice receiving weekly doses of infliximab,
an anti-TNF-� antibody, showed delayed appearance of mus-
cle pathology (104), at the age that TNF-/mdx mice exhibited
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severe pathology. Infliximab treatment also yielded a cyclic
pattern of inflammation and necrosis that may have been an
effect of the weekly dosing regimen. Other recent findings
show that TNF-� can also play a role in promoting muscle
repair. Recovery of muscle strength after injury was impaired
in mice that were null mutants for the TNF receptor and in
mice treated with neutralizing anti-TNF-�, compared with
injured wild-type mice (105). Together, these findings show
that TNF-� is likely to serve more than one role in the mdx
pathophysiology and suggest that it is not yet possible to
predict whether modulating TNF-� levels in DMD patients
will have a net beneficial or detrimental effect.
Normalizing nitric oxide production. The discovery that

most nNOS is lost from dystrophin-deficient muscle (106) led
to recent studies of whether NOS deficiency contributes sig-
nificantly to dystrophinopathy and whether NO-based thera-
peutics could have value in treating DMD. Loss of NOS from
dystrophin-deficient muscle has now been shown to contribute
significantly to muscle pathology both through loss of NO-
mediated vasodilation (107,108), which could contribute to
muscle ischemia, and through loss of normal NO regulation of
the inflammatory response (48). NO derived from healthy
muscle can regulate muscle inflammation by inhibiting inflam-
matory cell invasion, inhibiting enzymes that generate cyto-
lytic molecules and by scavenging cytotoxic free radicals
(109–111). Thus, some of the increased susceptibility of dys-
trophin-deficient muscle to damage by free radicals (112) may
result from loss of normal levels of nNOS. Loss of NO
production by dystrophin-deficient muscle may also negatively
affect the regenerative capacity of muscle. NO can increase the
release of hepatocyte growth factor from muscle, which can
then increase activation of muscle satellite cells (113). Thus,
NO-based therapeutics have the potential to promote the repair
of dystrophin-deficient muscle, as well as decreasing damage.
Several experimental strategies have been examined to test

whether increasing NO levels in dystrophin-deficient muscle
can reduce pathology. In one approach, skeletal muscle NO
production in mdx mice was normalized with the expression of
a muscle-specific, nNOS transgene. NOS transgene expression
significantly reduced the concentration of macrophages and
ameliorated muscle damage, which indicated the possible ben-
efits of an NO-based anti-inflammatory therapy for DMD (48).
Another treatment strategy has used systemic administration of
L-arginine, the substrate of nNOS, which was reported to
reduce damage of mdx muscle by increasing expression of
utrophin (114,115). However, this finding differs from another
report that expression of a nNOS transgene in mdx muscle
reduced utrophin concentration in muscle fibers (116). Sys-
temic administration of NO donors could provide a third,
alternative strategy for NO-based treatments, although this
approach may present the most risk for adverse side-effects.
Exceeding normal NO levels can diminish any beneficial effect
(117) and may be cytotoxic to the muscle. Moreover, the
possibility of using NO-releasing compounds to treat DMD
patients will depend upon the development of a systemic
delivery system that does not perturb other NO-dependent
physiologic systems.

INCREASING MUSCLE CELL PROLIFERATION
AND REGENERATION

Blocking Myostatin Function

A door to new, potential, therapeutic strategies for treating
downstream events in DMD was opened in 1997 by the
discovery of myostatin, a member of the transforming growth
factor-� family of proteins that regulate the proliferation and
differentiation of numerous cell types (118). Myostatin, also
called growth and differentiation factor 8 (GDF-8), is a potent,
negative regulator of muscle mass. Unlike other factors that
regulate the proliferation and differentiation of muscle cells,
and typically promote one process at the expense of the other,
myostatin inhibits both proliferation and differentiation. The
net result of its duel inhibitory roles is that satellite cells are
maintained in a quiescent state in which they increase neither
the number nor size of muscle cells. Myostatin’s ability to
inhibit the proliferation of satellite cells is the best character-
ized of its negative regulatory roles. Satellite cells produce
myostatin, which can then inhibit their progression from the G0

of G1 phase of the cell cycle to the S phase by increasing the
expression of cyclin-dependent kinase inhibitors, leading to
reduced expression of cyclin-dependent kinases and with-
drawal from the cell cycle (119–122). These in vitro findings
are consistent with in vivo observations that show that null
mutation of myostatin causes muscle cell hyperplasia (118).
Although the withdrawal of satellite cells from the cell cycle
typically leads to their differentiation, myostatin can also in-
hibit differentiation. Application of myostatin to muscle cells in
vitro decreases expression of MyoD (123) and myogenin
(121), both of which are transcription factors that promote the
expression of muscle specific genes necessary for muscle
differentiation. This effect on inhibiting differentiation in vitro
is consistent with in vivo observations that show loss of
myostatin causes muscle hypertrophy (118,124). Thus, myo-
statin could have the capacity to inhibit muscle regeneration
after injury or disease by reducing both the proliferation and
differentiation of satellite cells required for muscle repair.
The powerful, negative regulatory effects of myostatin on

muscle mass and strength and the apparent specificity of
myostatin action on muscle have fueled recent and ongoing
studies that test whether preventing the expression or activation
of myostatin could have therapeutic value in muscle-wasting
diseases, including DMD. Strong support for this hope was
provided independently by two investigative teams who
showed that mdx mice that were null mutants for myostatin
(125) and mdx mice that received intraperitoneal injections of
anti-myostatin (126) showed increases in muscle mass and
strength, with no reported, adverse side effects. In addition, the
recent exciting case report of a 41⁄2-y-old boy with mutated
myostatin gene and no detectable myostatin in his sera (127)
suggests that treatments that reduce myostatin may not have
important detrimental effects on children. The subject, who
showed normal levels of circulating testosterone and IGF-1,
had unusually large muscles at birth. No health problems have
been observed, and cardiac function tests showed no cardio-
myopathy or cardiac conduction defects. Although the child
was originally admitted to the neonatal ward several hours after
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birth because of stimulus-induced myoclonus, the myoclonus
subsided after 2 mo of age. Although these findings support the
hope that myostatin-targeted therapeutics can ameliorate the
pathology of DMD without other significant, negative side-
effects, important questions remain to be addressed. For exam-
ple, although no negative effects were observed in the 41⁄2-y-
old boy who lacked myostatin, unanticipated consequences
may yet appear. In addition, even though myostatin-targeted
therapeutics can increase muscle mass and force production,
the muscles will still be dystrophin deficient. It is feasible that
increases in force production by dystrophin-deficient muscle
could increase mechanically induced damage. Nevertheless,
myostatin presents an important and ripe target for therapeutic
interventions for DMD.
Myostatin’s appeal as a therapeutic target in DMD is en-

hanced by the variety of strategies that could be used to
regulate its function. Anti-myostatin injections have already
been shown to produce desirable effects in mdx muscles (126),
and a similar strategy could be attempted using a humanized
antibody provided to DMD boys. Alternative approaches could
exploit any of several negative regulators of myostatin func-
tion. For example, binding of myostatin to its receptor can be
inhibited by follistatin binding to the latent, myostatin propep-
tide dimer (128). Similarly, follistatin-related gene product
(129) and growth and differentiation factor-associated serum
protein 1 (130) bind the myostatin propeptide dimer and inhibit
its activity. Therapies based on increasing follistatin, follista-
tin-related gene product, growth and differentiation factor-
associated serum protein, or the myostatin-binding domains of
any of these proteins could have potential benefits for DMD
patients.

Delivery of Mitogens to Muscle

Exogenous mitogens may also provide a means to slow the
progressive wasting of DMD muscle. Part of the beneficial
effects of potential therapeutic agents such as IGF-1 may
reflect their mitogenic effects on satellite cells, in addition to
increasing muscle protein synthesis. Much of the experimental
work examining the utility of mitogens on reducing dystrophi-
nopathy has centered on the effects of LIF on mdx muscle
pathology. LIF is a glycosylated cytokine that is a potent
mitogen, especially for undifferentiated cells, including embry-
onic stem cells (131), hematopoietic stem cells (132,133) and
primordial germ cells (134). The finding that LIF also stimu-
lated the proliferation of muscle cells introduced the possibility
that it could have therapeutic potential for treating muscle-
wasting diseases, including DMD.
Initial studies of LIF’s potential to promote muscle growth

and repair indicated that LIF could have therapeutic potential
for the treatment of muscle injury and disease. Delivery of
exogenous LIF to acutely injured muscle increased muscle
regeneration (135), and mice that were null mutants for LIF
showed slower muscle repair following injury than wild-type
mice (136). In addition, exogenous LIF prevented muscle
atrophy that occurred after muscle denervation (137). Based on
these studies, the palliative effect of LIF on mdx muscle
pathology was tested and yielded encouraging findings. In an

initial investigation (138), LIF was delivered to mdx mouse
diaphragms by diffusion from an alginate rod sutured to the
diaphragm, which permitted approximately 20 ng of LIF re-
lease per day. Three months of treatment yielded diaphragm
muscle hyperplasia and hypertrophy, as well as significant
reduction of fibrosis. Subsequently, delivery of only 5 ng of
LIF per day by the same mechanism was tested for 3 mo,
which yielded an increase in myoblast proliferation, but no
increase in fiber size was reported (139). Although these
findings indicate that LIF has therapeutic potential for the
treatment of dystrophinopathies, developing a mechanism for
its systemic delivery to muscle without causing undesirable
effects on nonmuscle tissues may present a tremendous imped-
iment for its use. For example, systemic administration of LIF
by the intravenous delivery of immortalized, murine hemato-
poietic cells that expressed high levels of LIF was lethal for the
recipient mice (140). Mice receiving the cells with the retro-
viral construct containing LIF cDNA died within 12 to 70 d,
showing cachexia, pancreatitis, and calcification in the heart
and skeletal muscle. In addition, LIF has been tested clinically
in patients with advanced cancer in a phase 1 trial in which
some negative, autonomic effects (dizziness, impotence) were

Figure 2. Schematic illustrating some of the possible routes through which
downstream events in dystrophinopathies have been targeted experimentally or
therapeutically. Red lines indicate processes that increase pathology. Green
lines indicate processes that decrease pathology. Lines ending in arrowheads
promote the subsequent event. Lines ending in bars inhibit the subsequent
event.
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Table 1. Therapeutics targeting downstream events in dystrophinopathy

Therapeutic agent Target DMD or mdx? Benefits Adverse effects References

Norethandrolone or
methandrostenolone

Anabolic pathways DMD Small, initial increase
in strength

Large, negative rebound
effect; androgenic effects

10, 11

Oxandrolone Anabolic pathways DMD Increase in strength Minor androgenic effects 17
Growth hormone Anabolic pathways DMD Small improvement

in cardiac function
Either no effect of a catabolic
effect on skeletal muscle

19, 25

Mazindol Inhibit growth
hormone

DMD Some studies report
increased muscle
function

No improvement in muscle
function; slowed growth;
sleep disturbances;
elevated heart rate

21, 22,
23, 24

IGF Anabolic pathways;
satellite cell
proliferation

mdx Increased muscle
mass and strength;
reduced pathology;
hyperplasia;
reduced fibrosis

None reported 31, 32, 33

Calpastatin transgene Inhibit proteolysis by
calpains in muscle

mdx Reduced necrosis None reported 43

Albuterol Inhibit proteolysis;
inhibit activation of
macrophages and T
cells

DMD Increased muscle
strength

None reported 45

MG-132 Inhibit proteolysis by
ubiquitin/
proteasome system

mdx Reduced muscle
pathology

None reported 52

Prednisone Immunosuppressant;
inhibit proteolysis;
enhance myogenesis

DMD and mdx Maintain strength
and function;
preserve
ventilatory
function; reduce
inflammation

Weight gain; slowed
longitudinal growth;
behavioral changes;
hirsutism; bone
demineralization

60–68;
71, 72

Deflazacort Immunosuppressant DMD Similar to prednisone Similar to prednisone but
generally less severe,
cataracts

81–87

Azathioprine Inhibit DNA synthesis DMD Fewer inflammatory
cells in muscle

No functional improvements 69, 70

Cyclosporine Inhibit calcineurin DMD and mdx Some studies report
increased muscle
strength

Some studies report no effect
or detrimental effect on
muscle function and
histology

88–95

Herbal medicine Uncertain DMD Some reports of
improved muscle
function

Weight gain; short stature;
hirsutism; cushingoid
appearance

98, 99

TNF-� transgene TNF-mediated
processes in muscle
and inflammatory
cells

mdx Reduced muscle
pathology at some
stages; improved
ventilitory function

Worsened muscle pathology
at some stages

102, 103

Infliximab Block TNF function mdx Delayed muscle
pathology

None reported 104

nNOS transgene NO-mediated
processes in muscle

mdx Reduced muscle
pathology and
inflammation

None reported 48

L-arginine Increase NO
production by NOS

mdx Reduced muscle
pathology;
increased utrophin
expression

None reported 114, 115

Anti-myostatin Block myostatin
function

mdx Hypertrophy;
hyperplasia;
reduced muscle
pathology;
improved muscle
function

None reported 126

Leukemia inhibitory
factor

Increase muscle cell
growth and
proliferation

mdx Hypertrophy;
hyperplasia;
reduced fibrosis;
increased strength

None reported 138, 139

838 TIDBALL AND WEHLING-HENRICKS



produced by relatively high dosages of LIF (up to 16 �g/kg/d
delivered s.c.) (141). However, no serious negative side-effects
were reported for mice receiving LIF at lower doses for longer
periods when released from a osmotic pump (136,142) or
injected intraperitoneally (143), indicating that it may be pos-
sible for LIF to be administered safely, and perhaps with
benefit to DMD patients.

CONCLUSIONS

The complex epigenetic factors that contribute to the patho-
physiology of muscular dystrophy create both obstacles and
opportunities for developing useful palliative treatments. On
one hand, the complicated matrix of interacting systems that
modulate the severity of the disease, including endocrine,
immune, and musculoskeletal systems, makes it difficult to
identify single, best strategies for developing treatments (Fig.
2). On the other hand, the existence of multiple factors that
contribute to affecting disease severity provides multiple, po-
tential therapeutic targets.
Current evidence suggests that several routes for developing

useful palliative treatments deserve further exploration. Exper-
imental findings in mdx mice and limited observations in DMD
patients indicate that dystrophinopathy can be reduced by
increasing the regenerative capacity of dystrophic muscle,
slowing the catabolic processes that are important in the dys-
trophic progression and preventing the exacerbation of dystro-
phic muscle cell death by the immune system. However, in
each case, experimental treatments need further examination to
determine efficacy, safety and reliability. Furthermore, there
has been little investigation of the benefit of combining mul-
tiple treatment strategies in parallel, which may magnify treat-
ment effects, or in series, which may minimize adverse side-
effects that may arise from the prolonged use of a single
treatment. In the end, genetic interventions will provide cures
for muscular dystrophy, but manipulating down-stream events
in the dystrophic pathology currently provides the best oppor-
tunities for slowing the disease progression and improving
quality of life for DMD patients.
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