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Congenital diaphragmatic hernia (CDH) is a major life-
threatening cause of respiratory failure in the newborn. Although
significant efforts have been undertaken to unravel the patho-
physiology of CDH, our current understanding of the etiology
remains spare. Here we outline recent evidence suggesting that
abnormalities linked with the retinoid signaling pathway early in
gestation may contribute to the etiology of CDH. These studies
include 1) the effect of altering the retinoid system in vitamin A
deficient and transgenic animals; 2) disruption of the retinoid
system in teratogen-induced CDH in rodents, 3) the effect of
co-administration of retinoids in nitrofen-induced CDH on lung
and diaphragm development, and 4) clinical evidence suggesting
decreased markers of vitamin A status in human CDH. Given the
substantial mortality and morbidity associated with this serious
developmental anomaly, advancements in this area will be crit-
ical. We feel that there is now sufficient circumstantial and direct

experimental evidence to warrant further testing of the retinoid-
CDH etiology hypothesis, including examination of retinoid-
regulated target genes that could be candidates for involvement
in CDH. (Pediatr Res 53: 726–730, 2003)
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Severe respiratory failure in the newborn remains a main
cause of neonatal death (1). Among the causes of severe
respiratory failure in the newborn, congenital diaphragmatic
hernia (CDH) remains the most life threatening (2, 3). Despite
improvements in survival, the mortality rate is still high in
many centers, and morbidity remains significant, with chronic
oxygen dependence, gastroesophageal reflux, poor growth and
developmental delay, and prolonged postoperative hospitaliza-
tion of affected neonates (4). A major factor limiting survival
in CDH is the degree of lung hypoplasia. Although tremendous
efforts have been undertaken to unravel the pathophysiology of
CDH, our current understanding of the pathogenesis and eti-
ology remains spare. In this perspective, we review evidence

linking abnormalities of the retinoid system and the occurrence
of CDH. From the outset, it should be emphasized that a direct
linkage between the etiology of CDH and retinoids has not
been established. However, we summarize data from a variety
of studies that provide a firm foundation for establishing the
hypothesis that abnormalities within the retinoid signaling
pathway during the early gestation contribute to the etiology of
CDH.

CONGENITAL DIAPHRAGMATIC HERNIA: THE
CLINICAL DILEMMA

CDH occurs in 1/2500 live births (5). This malformation
was first described in 1848 by Bochdalek, and for many years
was thought to be a simple hole in the diaphragm, potentially
curable by surgical closure of the defect after birth. However,
unlike other causes of respiratory failure in the newborn,
infants with CDH do not respond to our modern therapeutic
armamentarium, including exogenous surfactant, high fre-
quency oscillatory ventilation and inhaled nitric oxide (6).
When conventional therapy fails, extra-corporeal membrane
oxygenation (ECMO), a highly invasive, labor-intensive and
expensive technique (�$250,000 per patient (7)) with signifi-
cant risks is applied in some centers. ECMO bypasses the lung
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for a few days allowing pulmonary vascular resistance to
lower, but it does not overcome the basic problem of this
devastating malformation: lung hypoplasia. As a result, infants
with severe hypoplastic lungs die or suffer significant morbid-
ity. The antenatal diagnosis of CDH has been possible for
nearly two decades. However, apart from the coexistence of
any congenital defect or chromosomal abnormality, no single
antenatal feature has been shown to accurately predict outcome
in fetuses with CDH (8). Therefore, the multidisciplinary
perinatal staff faces a dilemma, both ante- and postnatally.
Antenatally, in case of in utero diagnosis of isolated CDH, it is
difficult to accurately advise the parents on the prognosis;
postnatally, in cases of severe respiratory failure, it is difficult,
in the absence of reliable prognostic indicators, to decide how
aggressive and sustained life support should be. Consequently,
the ultimate therapeutic goal would be to prevent the diaphrag-
matic defect and/or to promote lung growth before birth to
increase survival and decrease the morbidity of this malforma-
tion. This however requires a better understanding of the
mechanisms controlling diaphragm formation and lung growth
in CDH.

INSIGHTS INTO THE PATHOGENESIS OF CDH
FROM ANIMAL MODELS

The nitrofen model in rodents has been used widely to
examine lung and muscle malformations associated with CDH.
The use of this animal model arose from routine toxicological
studies demonstrating that, while nitrofen (2,4-dichloro-
phenyl-p-nitrophenyl ether) was relatively nontoxic to adult
animals, administration between E8-E11 resulted in ~50% of
the fetuses developing diaphragm malformations that were
remarkably similar to those seen in infants with CDH (9–12).
The similarities hold true with regard to the specific location
and extent of diaphragmatic defects as well as the periodic
occurrence of associated anomalies affecting cardiac, pulmo-
nary and skeletal tissues. More recently, three additional com-
pounds that cause diaphragmatic defects in rats have been
characterized (13). Biphenyl carboxylic acid (BPCA), bisdia-
mine [N,N'-octamethylenebis (dichloroacetamide)] and SB-
210661, all induce diaphragmatic as well as cardiopulmonary,
dermal and skeletal defects in the fetuses isolated from treated
pregnant rats. BPCA is a breakdown product of a thrombox-
ane-A2 receptor antagonist, bisdiamine is a spermatogenesis
inhibitor and SB-210661 is a benzofuranyl urea derivative
developed for inhibiting 5-lipoxygenase. The timing of admin-
istration of all of the CDH-inducing teratogen is critical.
Rodents are most susceptible between E9-11, a developmental
window corresponding to gestational weeks 4–6 in humans.

Animal models of CDH are beginning to provide insights
into the pathogenesis, pathophysiology and etiology of CDH
(reviewed in (14–16)). With regards to the pathogenesis, data
from the nitrofen model of CDH refutes the long-standing
hypothesis that a failure of pleuroperitoneal canal closure
underlies the anomaly. Rather, defects can be traced to a much
earlier stage of development, during the formation of the
primordial diaphragm, the pleuroperitoneal fold (PPF) (17).
Three-dimensional reconstructions of the PPF have demon-
strated that the malformed areas are consistently located in the

dorsolateral region (18) where 90% of the diaphragmatic de-
fects occur in human. Examinations of the muscle precursor
migration to the PPF and subsequent proliferation and differ-
entiation did not reveal any obvious abnormalities (19). How-
ever, the underlying substratum of the PPF to which muscle
precursors migrate to and subsequently proliferate and differ-
entiate upon appeared abnormal. That data led to the hypoth-
esis stating that the amuscular mesenchymal component of the
PPF, likely derived from the somatopleure, is defective and
does not provide a full foundation for the formation of dia-
phragmatic musculature. We tested the hypothesis using mice
in which muscle precursors fail to migrate to peripheral mus-
cle, including the diaphragm, due to homozygous mutation
(�/�) of the c-met gene (20). While the diaphragmatic mus-
culature fails to form in the null-mutants, the underlying
connective tissue that comprises the amuscular substratum
forms fully, thus, offering the opportunity to clearly visualize
the formation of the amuscular component of the diaphragm in
normal and nitrofen-exposed animals. It was demonstrated that
a defect characteristic of CDH could be induced in the amus-
cular membrane.

Lung hypoplasia and vascular remodeling in CDH results
from the invasion of the abdominal contents into the thoracic
cavity and the lack of efficient fetal breathing movements that
are associated with defects in the diaphragm. Indeed, pulmo-
nary hypoplasia and hypertension characteristic of CDH de-
velop as a result of surgically induced diaphragmatic defects in
the fetal sheep model (14, 21). However, there is evidence
from the nitrofen model that there is some degree of abnormal
lung development that occurs independent of those resulting
secondarily to the diaphragm defects (22–25). Whether or not
this is simply a reflection of the specific pathogenesis of the
nitrofen model or indicative of what happens in CDH is not
known. There could well be a common mechanism underlying
the etiology of CDH that targets diaphragm and lung develop-
ment in parallel. There is a more extreme hypothesis stating
that the lung hypoplasia is the primary defect that in turn
causes the diaphragm defect (26). Implicit in that hypothesis is
the notion that diaphragm embryogenesis is regulated or influ-
enced directly by the development of the adjacent lung tissue.
Recently, FGF10 null-mutant mice that do not develop lung
tissue have been used to address this issue (20). Specifically, it
was tested whether or not lung tissue was necessary for 1)
normal diaphragm formation and 2) diaphragm defects in
animal model of CDH. Two conclusions arose from the study.
First, the diaphragm forms normally independent of lung de-
velopment. Second, defects in the diaphragm in an animal
model of CDH occur in the absence of lung tissue.

RETINOIDS AND CDH: EXPERIMENTAL EVIDENCE

Vitamin A deficiency studies. The first published evidence
linking retinoids with CDH came from the examination of pups
born to dams with Vitamin A deficient diets (27–30). Dia-
phragmatic hernias were present in 25% to 40% of the off-
spring of Vitamin A deficient dams, with the majority having
right-sided defects. The rate of herniation was decreased when
Vitamin A was introduced into the diet during mid-gestation.
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Retinoid receptor knock-out mice. The developing dia-
phragm strongly expresses proteins associated with the metab-
olism and binding of retinoids (13, 31). Studies of retinoid
receptor double null-mutant mice, lacking both � and � sub-
types of retinoic acid receptors (RAR), have demonstrated that
some offspring have diaphragmatic hernias similar to those
observed with nitrofen exposure or CDH (32, 33). Presumably,
those are among the receptor subtypes involved in the devel-
opment of the component of the primordial diaphragm, the
PPF, affected in CDH. The role of retinoids in PPF formation
is a primary focus of ongoing investigation.

Nitrofen-induced suppression of retinoid response element
activation. Given the similarities between the defects induced
by nitrofen and those observed in infants with CDH, there is an
interest in understanding the biochemical mechanisms of ni-
trofen’s actions in hopes of gaining insights into the etiology of
CDH. Until recently, there was no substantial data demonstrat-
ing the mechanism by which nitrofen was inducing diaphrag-
matic defects. The data derived from the Vitamin A deficient
diet and retinoid receptor null mutant studies provided the
foundation for the hypothesis stating that nitrofen is acting to
perturb the retinoid signaling pathway. This hypothesis was
first tested using genetically engineered mice that had the lacZ
reporter gene linked to a retinoic acid response element
(RARE; Fig. 1). There was a pronounced suppression of
RARE-lacZ expression by nitrofen in in vitro whole embryo

culture and in in vivo mouse models (Fig. 2) (34). Further, the
nitrofen-induced suppression in vitro was antagonized by sup-
plemental administration of retinoic acid. Those experiments
provided direct evidence linking a perturbation of the retinoid
signaling pathway with an animal model of CDH.

CDH-inducing teratogens inhibit retinal dehydrogenase.
The studies demonstrating the suppression of retinoic acid
regulated gene transcription by nitrofen generated two funda-
mental questions. First, is the effect limited to the actions of
nitrofen? Second, what component of the retinoid signaling
pathway is being affected upstream of the RARE? These issues
were addressed in a subsequent study that tested the hypothesis
that all four compounds that induce CDH were working
through the common mechanism of inhibiting retinal dehydro-
genase (RALDH-2) (13), the major retinoic acid-synthesizing
enzyme that has recently been shown to play an important role
during lung development (35). The immortalized oligodendro-
cyte cell line OLN93 was used as a source of retinal dehydro-
genase to investigate the inhibitory effect of nitrofen, bisdia-
mine, BPCA and SB-210661. Cytosolic extracts were
separated with nondenaturing isoelectric focusing (IEF) and
tested for the ability to synthesize retinoic acid from all-trans
retinal. The data derived from the study clearly demonstrated
that all four CDH-inducing compounds inhibit RALDH-2 in a
dose-dependent manner. Further, the most potent inhibitor of
RALDH-2, bisdiamine, was also the most effective at inducing
diaphragmatic defects in embryonic rats (13).

Co-administration of retinoids and nitrofen. The co-
administration of large doses of Vitamin A (25,000 IU) and
nitrofen can reduce the incidence of CDH by ~15% to 30% and
attenuate lung hypoplasia (36, 37). To counteract the actions of
nitrofen administered on E8, Vitamin A must be delivered on
multiple days to have any effect with the crucial window
including days E10-11. The interpretation of these data, in light
of the RALDH-2 studies, is that the large doses of Vitamin A
provide a marked increase in the substrate for conversion to
retinoic acid. This partially offsets the decreased activity of
RALDH-2 toward the production of retinoic acid.

Why are certain tissues targeted in CDH? In ~60% to 65%
of cases in infants with CDH there are no obvious associated
anomalies other than the diaphragm defect (38, 39). In the rat
nitrofen model of CDH, the diaphragm defect is typically most
prominent. Interestingly, during the time of susceptibility to
nitrofen (E9-E11), there is a severe dip in retinol levels in the
rat due to acute increases in retinol utilization (40). Thus, the
embryo may be particularly susceptible to perturbations of
retinoid levels or function during this period. The developing
lung, which expresses RALDH-2 and relies on retinoid-
mediated signaling for proper development (35), is also com-
promised by nitrofen (Fig. 3) (22–25). Further, heart develop-
ment is particularly susceptible, as cardiac anomalies are the
most common associated defect in infants with CDH (38) and
are observed in the rat model of nitrofen-induced CDH (41–
43). It is conceivable that the “safety margin” for retinoic acid
mediated regulation of primordial diaphragm, lung and heart
development is relatively low and thus more susceptible to
perturbations compared with other tissues.

Figure 1. Simplified schematic of the retinoid signaling pathway. Retinol
bound to retinol binding protein (RBP) is transferred from the liver via blood
to target cells. Retinol-RBP complex binds to cell surface receptors and is
internalized. Within the cytoplasm retinol is bound to cellular retinol binding
proteins (CRBP). Retinol is converted to retinal by retinol dehydrogenase
followed by a further dehydrogenation to retinoic acid by retinal dehydroge-
nase. Retinoic acid (all-trans RA and 9-cis-RA) binds to receptors (RAR and
RXR families) that dimerize and regulate gene expression by binding to short
DNA sequences in the vicinity of target genes. Mice that have a lac-Z reporter
gene linked to a retinoid response element (RARE) were used to detect
nitrofen-induced suppression of RARE activation. Subsequent studies demon-
strated that the depression of RARE activation by nitrofen and other CDH-
inducing compounds could be explained by an inhibition of retinal dehydro-
genase enzyme.
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RELEVANCE TO CDH IN INFANTS

The retinoid pathway is clearly complex. A disruption or an
inappropriate spatiotemporal development of any one of the
multiple steps could account for the defects. Transient defi-
ciencies due to acute dietary inadequacies, impaired placental
transport, spontaneous malregulation of a component of the
retinoid metabolic cascade or teratogenic-mediated insults
could interfere with the formation of the primordial diaphragm
(~4–5 wk gestation). Alternatively, imbalances in the levels of
retinoid metabolites, binding proteins, nuclear receptors or
retinoid metabolizing enzymes, regardless of retinoid levels,
would lead to abnormal retinoid signaling.

To date, the only clinical data linking CDH and retinoids
arises from a study in which markers of vitamin A status (i.e.
retinol and retinol-binding-protein plasma levels) were found

to be decreased by ~50% in a small number of newborns with
CDH compared with healthy newborns (44). These are poten-
tially very important preliminary observations that should be
substantiated with studies from a larger population base.

Chromosomal defects account for ~10% of CDH cases.
Enns et al. provide a comprehensive summary of congenital
diaphragmatic defects and associated syndromes, malforma-
tions and chromosome anomalies (45). Included, is an associ-
ation of CDH with chromosome 15q defects. A search of
available databases found that a gene on chromosome 15 in the
region of the deletion or translocation (15q24-26) encodes for
cellular retinoic acid binding protein-1 (CRABP1). As the
genome becomes better characterized, it will be interesting to
examine the defective chromosomal regions for further evi-
dence of genes that modulate or are directly involved with the
retinoid-signaling pathway.

CONCLUSION

In summary, a foundation and direction for research into the
etiology of CDH has been lacking. Given the substantial
mortality and morbidity associated with this not so uncommon
developmental anomaly advancements in this area will be
critical. Retinoids play a central role in many biologic pro-
cesses in general (46) and during embryogenesis and lung
development in particular (47–49). We feel that there is now
sufficient circumstantial and direct experimental evidence to
warrant further testing of the retinoid-CDH etiology hypothe-
sis. This should include examination of gene targets regulated
by retinoid signaling that could be candidates for involvement
in the etiology of CDH.
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