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ABSTRACT: The uniform and definite thickness of polymer single crystals is ex
plained by introducing the concept of the excess free energy preventing the indefinite 
increase of thickness. The excess free energy is proved to be proportional to the square 
of thickness from the viewpoint of the crystal defect concept. The free energy contour 
diagram of crystal growth has a saddle point and a ravine parallel to the width axis. 
The value of the height axis corresponding to the bottom of the ravine is the thickness 
of polymer single crystal, which does not exceed a definite value. The ravine shifts 
upward along the height axis and thickness increases with elevating the crystallization 
temperature. The thickening rate by heat treatment is obtained by the method of the 
thermodynamics of irreversible processes, the thickness increases linearly in the earlier 
stage and tends in the final stage to a finite value characteristic of the heat treatment 
temperature. 
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Until the discovery of polymer single crystals/ 
it was considered that polymeric substances do 
not crystallize perfectly and some amorphous 
part remained. The striking phenomenon with 
plate-like polymer single crystals is their finite 
and uniform thickness of about 100 A in the 
chain direction and the inverse temperature 
dependence of their thickness. 1 These results 
were interpreted from the view point of kinetic 
theory. 2 ' 3 

The theories already presented are not con
sidered to be satisfactory. One point is con
cerned with the shape of the free energy contour 
diagram of crystal growth. When the crystal 
growth is considered to be controlled by the 
nucleation of a monolayer of polymer chains, 
having width a, height b, and thickness d, 
added on the lateral plane of the crystal, the 
free energy LJF required to form this size of 
monolayer satisfies the relation2 ' 3 

(a-a*)(b-b*)= -(LJF -LJF*)fdLJG ( 1 ) 

where JG is the free energy difference between 
liquid and crystal phases, a*, b*, and LJF* are 
the respective values of a, b, and LJF correspond
ing to the critical size of the monolayer nucleus. 

The contour lines at fixed values of L1 F are 
right hyperbola whose asymptotes cross at the 
point (a*, b*) and are parallel to the a- and b
axes and the free energy surface is saddle-shaped 
with the saddle point at (a*, b*, LJF*) as shown 
in Figure 1 where the chain direction is chosen 
in the b-axis. 

In explaining the formation of plate-like 
crystals with folded chains, the condition that 
b is fixed at a value nearly equal to b* is as
sumed by using the reason that b does not in
crease owing to the folded structure of the chains 
but judging from the contour diagram of crystal 
growth (Figure 1) b must increase as the mono
layer of chains grows larger along on the 
lateral plane. 

The other point is the shape of the crystal 
in the equilibrium state. When a single crystal 
is annealed after the termination of crystal 
growth, the chains in the crystal are expected 
to transform relatively easily to the thermodyna
mically stable configuration since the thickening 
of the crystal by heat treatment is easily realized. 

When the surface free energies of loop and 
lateral planes are denoted by a6 and a8 , the 
ratio of thickness to width at the stable state 
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Figure 1. Free energy contour diagram of crystal 
growth at fixed L1F predicted from eq 1. When 
the monolayer grows larger on the lateral surface, 
the height must increase indefinitely as the growth 
of monolayer. 

is predicted to be a./a8(sin 8)112, {} being the angle 
between the sides in the rhombic plane of the 
single crystal. As a. is far larger than a., the 
expected shape of crystal is one of a rectangular 
prism with a large height and a small base. 
However, the experimental shape differs from 
the above expectation; the plate-like shape is 
maintained during the heat treatment process 
though the thickness increases as the heat treat
ment temperature is elevated. Therefore, we 
should consider some structural effects of crystal 
as preventing the indefinite increase of thickness 
in the crystallization process. It is also expected 
that these effects may have some influence on the 
shape of the contour diagram of crystal growth. 

As a kind of structural effect we consider a 
sort of crystal defect or crystal imperfection 
formed in the process of crystal growth. The 
arrangement of the units of the polymer mole
cules in the thickness direction generally may 
not be perfect according to the characteristic 
properties of polymer molecules in that each 
unit is joined to the neighbouring one and each 
unit in chains cannot always occupy the lowest 
freee energy state. However, some of the units 
will be frozen in higher free energy states and 
thus the crystal may have excess free energy re
sulting in crystal defects or crystal imperfections. 

Taking into account the effect of crystal de
fects we investigate the crystal growth and some 
properties of the polymer single crystal. 
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1. FREE ENERGY OF THE CRYSTALLITE 

We consider a single crystal composed of / 
chains each containing q units, p corresponds 
to the width and q to the thickness, and the 
unit is taken as CH2 for polyethylene. The 
crystal of this size is termed the p-q crystal 
for the sake of simplicity. The thickness of 
crystal is measured by the number of units in 
a chain and the width by the number of chains 
in a side of rhombic plane of the crystal. 

Let the surface free energy per loop of the 
end plane be s., cs that per unit of the lateral 
plane and sr the free energy difference per unit 
between solid and liquid phases. The free 
energy of forming the p-q crystal in the ab
sence of excess free energy induced by the 
crystal defect is then expressed as 

il¢' =2/s.+4pqss-p2qsr ( 2) 

These quantities s., s8 , and sr are related to the 
surface free energy of the end plane a., that 
of the lateral plane as and the free energy of 
crystallization ilG by s.=a.l2 sin{}, s8 =a8 kl and 
cf=ilGkl2 sin{}, l being the distance between two 
neighbouring chains and k is the length of the 
unit. 

Next we consider the excess free energy which 
prevents the indefinite increase of crystal thick
ness. This is considered to originate in the 
crystal defect mentioned in the previous section. 
Since any term proportional to the thickness 
must be included in the free energy of crystal
lization as a part, the power dependence of the 
excess free energy on thickness must be higher 
than unity. Here we assume that the excess 
free energy is proportional to the square of 
thickness. Then the free energy of forming the 
p-q crystal is 

il¢=2/s.+4pqs8 -p2qsr+A./q2 ( 3) 

where ). is the proportionality constant depend
ing on the crystallization temperature and J.q 2 

is the excess free energy per chain. 4- 6 One 
method of obtaining the last term of eq 3 is 
given in Section 5. 

2. PRIMARY NUCLEATION 

When we consider the primary nucleation, 
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the free energy of forming the p-q size nucleus 
is also expressed as eq 3. Minimizing flcp we 
obtain the critical size of the primary nucleus as 

q*=4ce/cr 

p* =4c8/cr(l-8Ac 8 /c/) 

(4) 

( 5) 

When p and q exceed the critical values, a 
crystal begins to grow. The critical value p* 
is larger by the factor (l-8Ace/c/f1 than that 
obtained from eq 2; the critical size of the 
primary nucleus predicted from eq 3 is larger 
in width than that from eq 2. The critical free 
energy of forming the nucleus is given as 

flcp*=32c/ce/c/(l-8Ac 8 /c/) ( 6) 

If A is large enough, p* becomes negative and 
the nucleation cannot occur, but in the present 
treatment ). is not so large that p* does not 
have a negative value. When the value of A 
tends to zero the above results agree with those 
of Lauritzen and Hoffman3 and of Price. 2 

3. CONTOUR DIAGRAM OF CRYSTAL 
GROWTH 

Taking the excess free energy into account, 
we investigate the crystal growth. We consider 
that the crystal growth is brought about by the 
addition of new chains on the lateral plane 
subsequent to the primary nucleus formation. 
The model for forming the secondary nucleus 
is the ordinary one as shown in Figure 2. 

A new monolayer composed of t chains, each 
containing h units, is added on the lateral sur
face and the secondary nucleus is formed. The 
free energy required to form this nucleus from 
the liquid phase is 

ilcpg=2fce+2hc8 -thcr+Ath2 ( 7) 

The criteria of forming the secondary nucleus 

aflcpgfat=O } 
aflcpg/ah=O 

( 8) 

give 

h1 *=•r(l-[1- 8l.ce/</t 12)/2A ( 9) 

and 

(10) 

respectively. The critical free energy of forming 
the secondary nucleus is 
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Figure 2. Addition of new monolayer of polymer 
molecules on the lateral surface. The monolayer 
contains t chains each having h units. 

The condition of eq 8 gives a quadratic equa
tion of h and the other root of h from the 
equation is 

h/ =<r(l + [l-8Ace/</]112)/2A (12) 

but the critical free energy of forming the 
nucleus corresponding to h2 * is larger than Jcpg * 
and at the same time h2 * > 2q*, therefore the 
chance of forming the latter nucleus having h2 * 
is far less than the former. 

When we introduce the following variables 
and parameters 

tft* =r , hfh1 *=X 
(h 2*-h1*)/h1*=r;, 

( 13) 

we have 

{ cp-x } r-r; 
- (x-l)(x-1-r;) 

(14) 

This gives the t vs. h relation for each fixed 
value of cp. Taking the parameter r; as 2 we 
have the free energy contour diagram of crystal 
growth shown in Figure 3. This contour dia
gram has a saddle point A at (h 1 *, t*, iliftg *) and 
a ravine B parallel to the t-axis, accordingly, a 
crystal may grow along the gradient of the 
contour diagram to the bottom of the ravine 
passing the neighbourhood of the saddle point. 

Thus, as the crystal grows, its thickness attains 
the value of the h-axis corresponding to the 
bottom of the ravine but can not exceed this 
value irrespective of the intermediate process 
of crystallization. When t is large this value 
is given as 
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Figure 3. Free energy contour diagram of crystal 
growth at fixed tjJ predicted from eq 14. The 
number shows the value of </J. The height of the 
added monolayer has the value of h axis corre
sponding to the bottom of the ravine B, and the 
thickness of the single crystal has a definite value 
irrespective of the size. 

(15) 

As r; increases (A decreases) the line indicated 
as 1.0 transfer to the straight line. parallel to 
the h-axis; the contour lines at fixed <jJ transform 
to the right hyperbola as A tends to zero, in 
this case, h* tends to infinity as the crystal 
grows larger and larger. 

4. THICKNESS IN STABLE STATE 

The stable state in the present consideration 
is the quasi-equilibrium state in which the crystal 
defect is frozen in, therefore the thickness in 
the stable state means the quasi-equilibrium 
thickness. This thickness is obtained by mini
mizing .:1¢ in eq 3 at constant temperature and 
constant volume. Then, for large crystals with 
large p we have 

(16) 

where the higher order terms than q/p are 
neglected since q is smaller than a definite value 
irrespective of p. 

Since we have 

(17) 

from eq 4, 15, and 16, we see that q' has a 
value between q* and h*. Therefore, in the 
fully grown or matured crystal, the thickness 
q' does not exceed a finite value determined by 
the crystallization temperature no matter what 
the size of the crystal is. 
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In the present consideration q' corresponds to 
the experimentally measured crystal thickness, 
the dependence of which on the crystallization 
temperature is inversely proportional to the de
gree of supercooling LJT, where L1T= T m- Tc, T m 
is the melting temperature of crystal and Tc is 
the crystallization temperature. Therefore, 
q' oc1jL1T and A is expected to be proportional 
to (LJT). 2 Whether the temperature dependence 
of A is obtained by using the crystal defect 
concept is examined in the next section. 

5. AN INTERPRETATION OF EXCESS 
FREE ENERGY TERM 

We investigate a method of deriving the ex
cess free energy term, Aq2 , from the viewpoint 
of crystal defect. 

If there is no crystal defect, a chain in a 
crystal may form a trans zig-zag plane and all 
the units in a chain occupy the lowest energy 
state. However, in the actual process of crystal 
growth, all the units in a chain may not always 
be in the lowest energy state and some of them 
will be in higher one. In other words, all the 
units in a chain may not always be arranged 
in the trans conformation and some of them 
will take the gauche position. 

We consider such a model of chain in a 
crystal; the chain contains n subgroups of units 
lining up on a zig-zag plane, the position con
necting two neighbouring subgroups of units 
have a complex arrangement of a few units 
including the mixed trans-and-gauche conforma
tion, this position may be considered a sort of 
point dislocation, the defect point. 

The zig-zag planes of subgroups will not in 
general be on the same plane owing to the effect 
of the defect points. We choose a reference 
plane which has the lowest free energy in its 
arrangement of units. Each zig-zag plane of 
subgroup of units will have some deviation 
from the reference plane, this deviation will 
induce the excess free energy of a chain. 

Let us consider a chain interacting with its 
surrounding chains. For the sake of simplicity, 
the intermolecular interaction is approximated 
by an average potential field produced by the 
surrounding chains. The potential energy of 
the reference plane is zero. When the zig-zag 
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plane of the i-th subgroup of units is simply 
termed "the i-th plane," it has a free energy 
increase determined by its deviation from the 
reference plane. This free energy increase may 
be approximated by the energy increase in the 
average potential field mentioned above. Then, 
if the deviation angle of the i-th plane is de
noted as Oi, the free energy increase of the 
i-th plane should be expressed as eq 18 as a 
first approximation 

fi=K<O/)+w (18) 

where K is a constant having similar meaning 
to distortion modulus, w is the free energy in
crease per defect point and < > denotes the 
average with respect to chain conformation. 
The deviation of each plane may occur nearly 
randomly in both the positive and negative 
directions from the reference plane by a factor 
JO, JO being the deviation angle per defect 
point, <O/) is expected to be proportional to 
iL182 and eq 18 becomes 

(19) 

Summing up eq 19 we have the excess free 
energy 

[(A)= i:; [i'::.n2JCL182 f2+nw (20) 
i;::::l 

and the next question is to evaluate n. 
The density of crystal defects may be smaller 

when a crystal grows slowly at a high tempera
ture than when it grows rapidly at a low tem
perature. Though the defect points may be 
formed in the process as each unit is lined up 
step by step on the lateral plane, the defect 
point may have a chance to be removed after 
the lining-up of units. The number of defect 
points initially formed in the process of crystal
lization at high temperature will be large be
cause of the violent thermal motion at high 
temperature. However, the chance of the 
initially formed defect point disappearing will 
be also large at high temperature and superior 
to the chance of forming the defect point ini
tially. Accordingly, the density of the finally 
frozen defect points in a crystal will be small 
at high temperatures and large at low tempera
tures and it will be controlled mainly by the 
disappearance of crystal defects. The concept 
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of crystal defect mentioned in our treatment is 
concerned with the frozen defect and the defect 
point means the frozen one. 

Let the probability of forming a frozen defect 
point at a temperature T be P(T), then qP(T) 
defect points are formed in a chain. Here, 
P( T) is defined in the meaning of the quasi
equilibrium state. The number of subgroups 
of units in a chain n is equal to qP(T) in our 
approximation and eq 20 becomes 

f(A)=q2JCL182P(T)2/2+qwP(T) (21) 

The second term proportional to q in eq 21 
should be the term included in er, therefore the 
excess free energy term of a chain must be 
equal to the first term of eq 21, and we have 

A=KL182P(T)2/2 (22) 

Since P(T) should be controlled by the whole 
kinetic process of crystal growth, the practical 
evaluation of P( T) is very difficult. However, 
when we want to know only the temperature 
dependence of P(T), it will be obtained qualita
tively by a phenomenological consideration. 
Let the melting temperature of a large crystal 
without any crystal defect be T m, the equilibrium 
melting and recrystallization taking place at T m 

under constant pressure. Then, if a crystal 
were formed at T m. it should have no crystal 
defect, that is P(Tm)=O. When the degree of 
supercooling is not so large, P(T) may be ap
proximated by the first order term of super
cooling as 

P(T)=AL1TfT m (23) 

where JTfT m is the degree of supercooling 
given by ( T m- T)/T m, T being the crystallization 
temperature, A is a constant. 

By the use of eq 23, eq 22 leads to 

A A2 KL182 ( L1 T )2 (24) 
2 Tm 

This is the temperature dependence of A. 
The crystal thickness is nearly equal to the 

quasi-equilibrium thickness q' given by eq 16, 
we have 

This is the well known crystallization tempera-
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ture vs. thickness relation already discussed in 
Section 4. 

The temperature dependence of A, Acc(JT)2 , 

discussed in Section 4 is obtained by using the 
crystal defect model in this section. 

6. RATE OF THICKENING BY HEAT 
TREATMENT 

The thickening rate of a polyethylene single 
crystal by heat treatment was measured by ob
serving the long period pattern of narrow X
ray diffraction 7- 9 and the experimental thickness 
vs. time relation was found for the long time 
scale to be 

qccln t (26) 

This relation is explained by Hirai, et al., 9 by 
using the method of a rate process, but this 
shows that the thickness increases indefinitely 
with time. However, the recent work for single 
crystals formed from monodispersed polyethylene 
shows that the thickness of single crystal seems 
to reach a maximum at a finite value character
istic of the heat treatment temperature and the 
molecular weight. 10 ' 11* 

When a crystal is treated by heating at an 
elevated temperature, the crystal defect may be 
decreased by the same process of disappearance 
of the defect points as mentioned in Section 5. 
Though the disappearance way in which the 
defect points disappear in the process of an
nealing may generally differ from that in the 
process of crystallization, the density of crystal 
defect should be controlled by the disappearance 
of the defect points as already mentioned in 
the previous section. In addition, in our ap
proximation, the relation between A and tem
perature which is derived by using the tempera
ture dependence of the probability of forming 
the frozen defect points may be applicable to 
the case of thickening by heat treatment. We 
then use eq 24 for A in the qualitative treatment 
of the rate of thickening by heat treatment. 

When the temperature is elevated from a 
initial temperature T0 to an annealing tempera
ture Ta, the thickness q increases from the initial-

* Properties affected by molecular weight are out
side of the consideration in the present treatment 
and will be treated in another article. 
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value [2s./ A( T0)] 112 to the final one [2se/ A( Ta)]112 

by our theory, where A(T0)>A(Ta)· Once the 
defect is diminished by heat treatment, the 
crystal should not return to the initial defect
rich state even though it is cooled down again, 
since the defect-poor state is more stable. The 
thickening by heat treatment is therefore ex
pected to be irreversible. 

We formulate the above consideration of 
thickening by heat treatment on the basis of 
the thermodynamics of irreversible processes. 
The driving force or affinity X inducing the 
thickening of the crystal is given by using eq 3 

X=-(aJ¢) =M( 2"2·-A) (26) 
aq T,N q 

for a large crystal where N=p2q. By analogy 
with other irreversible processes the pheno
menological law for the thickening rate is 
written as 

dq =LX= LM( 2"• -A) (27) 
dt q2 

L is the proportionality constant. In the case 
of quasi-equilibrium state, dqjdt=O, and eq 16 
is obtained again for the thickness which corre
sponds to the value of q at infinite t, namely 
q==(2s./A)112 • Writing q0 for the initial value 
of q, we obtain the q vs. t relation from eq 27, 

j_+_!__ln q=-q 
q= 2 q=+q 

= + _.!__ ln q=- qo- (28) 
q= 2 q=+qo q= 

The thickening behavior predicted from eq 28 
in short and long time ranges are 

q:::::.qo+2q=2(q=2-qo2)At' 
qo 

for short time ranges 

q:::::.q=(l-2q=- qoe-121q=-q0 llq=' eAt) , 
q=+qo 

for long time ranges 

(29) 

namely, the thickness increases linearly with 
time in the earlier stage and tends to a finite 
value in the final stage. This tendency qualita
tively agrees with the behavior observed ex
perimentally. 
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In the above treatment A is assumed not to 
depend on time and to take a finite value J..(T.). 
However, A may generally depend on time and 
may be expressed as 

A(t)=J..oo+(J..o-Aoo)\l'(t) l 
10(t)=l , for t=O 

0<\l'(t)<l, for O<t<oo 

\l'(t)=O, for t=oo 

(30) 

where Ao=A(T0 ) and A==J..(T.). In order to 
facilitate the calculation, we choose a formula 
for J..( t); 

q02 q=2-q2 
.:l(t)=Aoo+(J..o-Aoo) 2 2 --2 -¢(!) (31) 

qoo -qo q 

which may be equivalent to eq 30, where ¢(t) 
have the same properties as 10(t) in eq 30. Then 
we obtain from eq 27 

_i_ +_!__In q=-q 
qoo 2 qoo+q 

= qo +_!___In q=- qo- 2LN/:"(t- ( t ¢( t')dt') 
qoo 2 qoo+ qo qoo J 0 

(32) 

which gives a slower rate of thickening than 
that predicted from eq 28. 

SUMMARY AND DISCUSSION 

Introducing the excess free energy term we 
obtained the free energy contour diagram of 
crystal growth, which has a narrow ravine 
parallel to the width axis. The crystal grows 
along the gradient of the contour diagram to 
the bottom of the ravine, namely, the fully 
grown crystal has a plate-like shape with a uni
form and definite thickness irrespective of the 
size of the crystal. Therefore, we obtain an 
interpretation as to the plate-like polymer single 
crystal is formed by using the excess free energy 
term. 

Owing to the present consideration, the critical 
condition giving rise to the chain folding is 
controlled by the balance between the fold-free 
energy of chains and the excess free energy. 
Since the excess free energy increases with the 
second power of thickness, it may overstep the 
fold-free energy of the chains when the thickness 
exceeds a critical value. When a crystal be-
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comes thicker than the critical value it has 
higher free energy than the thinner crystal with 
a folded structure consequently, the crystal with 
folded chains, having a plate-like shape and 
definite thickness thinner than the critical value, 
can survive as a stable crystal. 

We can also explain the irreversible thickening 
by heat treatment. When the temperature is 
elevated slowly, the crystal defect may be re
duced by the thermal motion of units in chains 
and the excess free energy will be reduced, 
consequently, the thickness increases with raising 
the heat treatment temperature. This thickening 
phenomena is irreversible since the crystal may 
not return to the former defect-rich state even 
though it is cooled down. 

In the present work, the excess free energy 
term is considered to originate from the frozen 
crystal defects. The reason for reaching this 
consideration is to explain the irreversible thick
ening by heat treatment. If this term is related 
to the lattice vibration, the thickening must be 
reversible. 

Although we obtain the excess free energy 
term from the model of Section 5, this model 
is not the only one. Another model5 also leads 
to the same result, the square dependence on 
the thickness, but, does not the temperature 
dependence of J... Accordingly, the present 
model is considered to be one of the best for 
the excess free energy term. However the direct 
certification of this model may be impossible. 
The existence of the excess free energy term 
may be ascertained by obtaining the theoretical 
results capable of determining a parameter, such 
as J..q2, experimentally. The results, perhaps, 
contain the apparent melting temperature. 

REFERENCES 

1. A. Keller and A. O'Conner, Discuss. Faraday 
Soc., 25, 114 (1958). 

2. J. I. Lauritzen and J.D. Hoffman, J. Res. Nat. 
Bur. Stand., A, 64, 73 (1960). 

3. F. P. Price, J. Polym. Sci., 42, 49 (1960). 
4. Hayashi, T. Takizawa, Y. Takano, and C. 

Shibuya, Rep. Progr. Polym. Phys. Japan, 11, 
107 (1968). 

5. S. Hayashi and T. Takizawa, ibid., 14, 107 
(1971). 

6. S. Hayashi and T. Takizawa, J. Cryst. Growth, 

421 



S. HAYASHI 

24/25, 591 (1974). 
7. W. 0. Statton and P. H. Geil, J. Appl. Polym. 

Sci., 3, 357 (1960). 
8. E. W. Fischer and G. F. Schmit, Angew. Chern., 

74, 551 (1962). 
9. N. Hirai, T. Mitsuhata, and H. Yamashita, 

422 

Kobunshi Kagaku (Chern. High Polymers), 18, 
33 (1961). 

10. M. Takayanagi and F. Nagatoshi, Mem. Fac. 
Eng. Kyushu Univ., 24, 33 (1965). 

11. E. W. Fisher, Kollod.-Z. Z. Polym., 231, 458 
(1969). 

Polymer J., Vol. 7, No. 4, 1975 


	Growth Habits of Polymer Single Crystals
	1. FREE ENERGY OF THE CRYSTALLITE
	2. PRIMARY NUCLEATION
	3. CONTOUR DIAGRAM OF CRYSTAL GROWTH
	4. THICKNESS IN STABLE STATE
	5. AN INTERPRETATION OF EXCESS FREE ENERGY TERM
	6. RATE OF THICKENING BY HEAT TREATMENT
	REFERENCES


