Regular Article

Polymer Journal (2009) 41, 835–842; doi:10.1295/polymj.PJ2009110

Structure and Performance of Polyamide 6/Halloysite Nanotubes Nanocomposites

Halloysite Reinforced Polyamide 6 Nanocomposites

Baochun Guo1, Quanliang Zou1, Yanda Lei1 and Demin Jia1

1Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China

Correspondence: Baochun Guo, Fax: +86-20-2223 6688, E-mail: psbcguo@scut.edu.cn

Received 3 May 2009; Accepted 22 June 2009; Published online 5 August 2009.

Top

Abstract

Halloysite nanotubes (HNTs) are chemically modified via silylation with 3-(trimethoxysilyl)propyl methacrylate. The modified HNTs (m-HNTs) are characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, solid state 13C NMR spectroscopy, thermogravimetric analysis (TGA) and extraction experiment. It is showed that the silane has been effectively grafted onto HNTs surface and renders the hydrophobicity to m-HNTs. The nanocomposites consisting of polyamide 6 (PA6) and m-HNTs show significantly improved mechanical properties and heat distortion temperature, which are attributed to the covalent interfacial bonding and the excellent dispersion state of m-HNTs. M-HNTs are found to disperse individually into PA6 matrix. The nucleation effect by m-HNTs is verified by the lowered fold-surface free energy of PA6/ HNTs nanocomposites and the observation of polarized optical microscopy (POM). Both high cooling rate and high m-HNTs loading are beneficial to the formation of gamma-crystals of PA6. The polymorphism could be correlated to the heterogeneous nucleation effects of m-HNTs and the interfacial interactions between m-HNTs and PA6 matrix.

Keywords:

Polyamide, Halloysite, Nanocomposite, Mechanical Property, Crystallization

Top

References

  1. “Nylon Plastics Handbook,” M. I. Kohan, Ed., Hanser Gardner Publications, 1995.
  2. A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1179 (1993). | Article |
  3. Y. Kojima, A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1185 (1993). | Article | ISI | CAS |
  4. A. N. Wilkinson, Z. Man, J. L. Stanford, P. Matikainen, M. L. Clemens, G. C. Lees, and C. M. Liauw, Compos. Sci. Technol., 67, 3360 (2007). | Article |
  5. A. N. Wilkinson, Z. Man, J. L. Stanford, and C. M. Liauw, Macromol. Mater. Eng., 291, 917 (2006). | Article |
  6. M. Fermeglia, M. Ferrone, and S. Pricl, Fluid Phase Equilib., 212, 315 (2003). | Article |
  7. T. X. Liu, I. Y. Phang, L. Shen, S. Y. Chow, and W. D. Zhang, Macromolecules, 37, 7214 (2004). | Article |
  8. C. G. Zhao, G. J. Hu, R. Justice, D. W. Schaefer, S. M. Zhang, M. S. Yang, and C. C. Han, Polymer, 46, 5125 (2005). | Article |
  9. W. G. Shao, Q. Wang, F. Wang, and Y. H. Chen, Carbon, 44, 2708 (2006). | Article |
  10. B. L. Pan, Q. F. Yue, J. F. Ren, H. G. Wang, L. Q. Jian, J. Y. Zhang, and S. R. Yang, Polym. Test., 25, 384 (2006). | Article |
  11. B. L. Pan, Q. F. Yue, J. F. Ren, H. G. Wang, L. Q. Jian, J. Y. Zhang, and S. R. Yang, J. Macromol. Sci., Part B: Phys., 45, 1025 (2006). | Article |
  12. J. B. Dixon and T. R. McKee, Clays Clay Miner., 22, 127 (1974). | Article |
  13. G. J. Churchman, T. J. Davy, and L. A. G. Aylmore, Clay Miner., 30, 89 (1995). | Article |
  14. T. F. Bates, F. A. Hildebrand, and A. Swineford, Am. Mineral., 35, 463 (1950).
  15. R. R. Price, B. P. Gaber, and Y. M. Lvov, J. Microencapsulation, 18, 713 (2001). | Article | PubMed |
  16. E. Joussein, S. Petit, J. Churchman, B. Theng, D. Righi, and B. Delvaux, Clay Miner., 40, 383 (2005). | Article |
  17. Y. P. Ye, H. B. Chen, J. S. Wu, and L. Ye, Polymer, 48, 6426 (2007). | Article |
  18. M. X. Liu, B. C. Guo, Q. L. Zou, M. L. Du, and D. M. Jia, Nanotechnology, 19, 205709 (2008). | Article | PubMed |
  19. M. X. Liu, B. C. Guo, M. L. Du, X. J. Cai, and D. M. Jia, Nanotechnology, 18, 455703 (2007). | Article |
  20. M. L. Du, B. C. Guo, and D. M. Jia, Polym. J., 38, 1198 (2006). | Article |
  21. B. C. Guo, Q. L. Zou, Y. D. Lei, M. X. Liu, and D. M. Jia, New Chem. Mater. (in Chinese) 6, 32 (2008).
  22. G. Gurato, A. Fichera, F. Z. Grandi, R. Zanetti, and P. Canal, Makromol. Chem., 175, 953 (1974). | Article |
  23. D. M. Lincoln, R. A. Vaia, and R. Krishnamoorti, Macromolecules, 37, 4554 (2004). | Article |
  24. M. Colilla, M. Darder, P. Aranda, and E. Ruiz-Hitzky, J. Mater. Chem., 15, 3844 (2005). | Article |
  25. http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/cre_index.cgi?lang=eng
  26. T. X. Liu and I. Y. Phang, Macromolecules, 37, 7214 (2004). | Article |
  27. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, and T. O. Kurauchi, J. Mater. Res., 8, 1185 (1993). | Article | ISI | CAS |
  28. B. C. Guo, Q. L. Zou, Y. D. Lei, M. L. Du, M. X. Liu, and D. M. Jia, Thermochim. Acta, 484, 48 (2009). | Article |
  29. J. D. Hoffman, G. T. Davis, and J. I. Lauritzen, in “Treatise on Solid State Chemistry,” N. B. Hannay, Ed., Plenum, New York, 1976, p497.
  30. S. Vyazovkin, J. Comput. Chem., 18, 393 (1997). | Article |
  31. S. Vyazovkin, J. Comput. Chem., 22, 178 (2001). | Article |
  32. D. R. Holmes, C. W. Bunn, and D. J. Smith, J. Polym. Sci., 17, 159 (1955). | Article |
  33. H. Arimoto, M. Ishibashi, M. Hirai, and Y. Chatani, J. Polym. Sci, Part A: Polym. Chem., 3, 317 (1965).
  34. X. H. Liu, Q. J. Wu, and L. A. Berglund, Macromol. Mater. Eng., 287, 515 (2002). | Article |
  35. M. K. Akkapeddi, Presented at ANTEC 99 Conference, New York, 1999.

MORE ARTICLES LIKE THIS

These links to content published by NPG are automatically generated.