Regular Article

Polymer Journal (2008) 40, 94–103; doi:10.1295/polymj.PJ2007042

Salt- and pH-Resisting Collagen-based Highly Porous Hydrogel

Ali Pourjavadi, Mehran Kurdtabar and Hossein Ghasemzadeh

Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, P.O. Box: 11365-9516, Tehran, Iran

Correspondence: Ali Pourjavadi, E-mail: purjavad@sharif.edu

Received 14 May 2007; Accepted 19 October 2007; Published online 4 December 2007.

Top

Abstract

A novel approach was developed to prepare a highly porous hydrogel with superior salt- and pH-resisting properties. According to this method, synthetic comonomers, i.e. acrylic acid (AA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPS), were polymerized and crosslinked in the presence of hydrolyzed collagen as a natural backbone. The characterizations of hydrogels were investigated by swelling experiment, Fourier transform infrared (FT-IR) spectroscopy, acid-base titration and thermogravimetric analysis (TGA). Morphology of the samples was examined by scanning electron microscopy (SEM). Experimental results indicate that the hydrogel has an absorbency of 360 and 73–82 g/g for distilled water and saline solutions, respectively. Water absorbency slightly changes from pH 3 to 8 and interestingly is more than of that in distilled water (~500 g/g). The hydrogel thus prepared was showing a better salt- and pH-resistance compared to collagen-g-PAA hydrogel due to the introduction of the AMPS segment and therefore is a suitable candidate for horticulture and tissue engineering applications.

Keywords:

Hydrolyzed Collagen, Hydrogel, Porous, Salt-resisting, pH-Resisting

Top

References

  1. T. Aoki, M. Kawashima, H. Katono, K. Sanui, N. Ogata, T. Okano, and Y. Sakurai, Macromolecules, 27, 947 (1994). | Article | ISI | CAS |
  2. Y. Hu, K. Horie, T. Tori, H. Ushiki, and X. C. Tang, Polym. J., 25, 123 (1993). | Article |
  3. Y. Hirokawa and T. Tanaka, J. Chem. Phys., 81, 6379 (1984). | Article | ISI |
  4. J. Chen and K. Park, J. Controlled Release, 65, 73 (2000). | Article |
  5. J. Chen and K. Park, Carbohydr. Polym., 41, 259 (2000). | Article |
  6. T. Gotoh, Y. Nakatani, and S. Sakohara, J. Appl. Polym. Sci., 69, 895 (1998). | Article |
  7. M. V. Badiger, M. E. McNeil, and N. B. Graham, Biomaterials, 14, 1059 (1993). | Article | PubMed |
  8. S. J. Smith and E. J. Lind, U. S. Patent 5 399 591 (1995).
  9. G. R. Mahdavinia, A. Pourjavadi, H. Hosseinzadeh, and M. J. Zohuriaan-Mehr, Eur. Polym. J., 40, 1399 (2004). | Article | ISI |
  10. A. Pourjavadi and M. Kurdtabar, Eup. Polym. J., 43, 877 (2007). | Article |
  11. J. Chen, H. Park, and K. Park, J. Biomed. Mater. Res., 44, 53 (1999). | Article | PubMed | ISI | CAS |
  12. K. Kabiri and M. J. Zohuriaan-Mehr, Polym. Adv. Technol., 14, 438 (2003). | Article |
  13. J. Zhang, W. M. Song, L. Zhang, X. M. Xie, and Y. Yang, Petrochem. Technol., 31, 994 (2002).
  14. H. Y. Yang, Fine. Chem., 14, 27 (1997).
  15. A. Pourjavadi, M. Kurdtabar, G. R. Mahdavinia, and H. Hosseinzadeh, Polym. Bull., 57, 813 (2006). | Article |
  16. M. J. Ramazani-Harandi, M. J. Zohuriaan-Mehr, A. A. Yousefi, A. Ershad-Langroudi, and K. Kabiri, Polym. Test., 25, 470 (2006). | Article |
  17. K. P. Rao, K. T. Joseph, and Y. Nayudamma, Die Makromol. Chem., 175, 729 (1974). | Article |
  18. K. P. Rao, K. T. Joseph, and Y. Nayudamma, J. Polym. Sci., Part A: Polym. Chem., 9, 3199 (1971). | Article |
  19. R. M. Silverstein and F. X. Webster, in “Spectrometric Identification of Organic Compounds,” 6nd ed., Wiley, New York, 1998.
  20. L. B. Peppas and R. S. Harland, “Absorbent Polymer Technology,” Elsevier, Amsterdam, 1990.
  21. P. J. Flory, “Principles of Polymer Chemistry,” Ithaca, Cornell University Press: New York, 1953.
  22. N. A. Peppas and A. G. Mikes, “Hydrogels in Medicine and Pharmacy,” Vol. 1, CRC Press: Boca Raton, FL, 1986.
  23. J. Chen and Y. Zhao, J. Appl. Polym. Sci., 75, 808 (2000). | Article |
  24. H. Hosseinzadeh, A. Pourjavadi, G. R. Mahdavinia, and M. J. Zohouriaan-Mehr, J. Bioact. Compat. Polym., 20, 47 (2005). | Article |
  25. S. C. Hsu, T. M. Don, and W. Y. Chiu, Polym. Degrad. Stab., 75, 73 (2002). | Article |
  26. V. D. Athawale and V. Lele, Starch/Starke, 50, 426 (1998). | Article |
  27. W. F. Lee and W. Y. Yuan, J. Appl. Polym. Sci., 77, 1760 (2000). | Article |
  28. J. Branrup and E. H. Immergut, in “Polymer Handbook,” 3rd ed., Wiley, New York, 1989.
  29. A. Hebeish and J. T. Cuthrie, “The Chemistry and Technology of Cellulosic Copolymers,” Springer-Verlag, Berlin, Berlin, p 46.
  30. G. Pass, G. O. Philips, and D. J. Wedlock, Macromolecules, 10, 197 (1977). | Article |
  31. M. Tako, S. Toyama, Z. Q. Qi, and E. Yoza, Food Res. Int., 31, 543 (1998). | Article |
  32. W. F. Lee and R. J. Wu, J. Appl. Polym. Sci., 62, 1099 (1996). | Article |
  33. W. F. Lee and R. J. Wu, J. Appl. Polym. Sci., 64, 1701 (1997). | Article |
  34. G. R. Mahdavinia, A. Pourjavadi, and M. J. Zohuriaan-Mehr, Polym. Adv. Technol., 15, 173 (2004). | Article |
  35. “Superabsorbent Polymers: Science and Technology,” F. L. Buchholz and N. A. Peppas, Ed., American Chemical Society, Washington DC, 1994.
  36. H. Omidian, S. A. Hashemi, P. G. Sammes, and I. Meldrum, Polymer, 39, 6697 (1998). | Article |
  37. H. Omidian, S. A. Hashemi, P. G. Sammes, and I. Meldrum, Polymer, 40, 1753 (1999). | Article |
  38. M. Aizawa and S. Suzuki, Bull. Chem. Soc. Jpn., 44, 2967 (1971). | Article |