Short Communication

Polymer Journal (2007) 39, 73–80; doi:10.1295/polymj.PJ2006095

Molecular Dynamics Study of the Adhesion between End-Grafted Polymer Films II —Effect of Grafting Density—

Hiroshi Morita1, Haruki Miura2, Masamichi Yamada2, Tetsuo Yamaguchi1 and Masao Doi1

  1. 1Japan Science and Technology Agency & Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
  2. 2Department of Computational Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan

Correspondence: Hiroshi Morita, E-mail: hmorita@rheo.t.u-tokyo.ac.jp

Received 17 August 2006; Accepted 31 October 2006; Published online 7 December 2006.

Top

Abstract

Adhesion between two polymer films consisting of end grafted polymer is studied by coarse-grained molecular dynamics. The grafting density of the polymer film is varied from the dilute mushroom region to dense polymer brush region, and the debonding behavior is studied by varying the temperature. It is shown that below the glass transition temperature, the debonding behavior is mainly determined by grafting density. At low grafting density, fibrils are formed and the stress-strain curve has a plateau region. At high grafting density, the fracture becomes brittle like, and the stress drops sharply after the strain exceeds certain critical values. Above the glass transition temperature, cavities are formed, and the stress becomes a gradually decreasing function of strain.

Keywords:

Coarse-Grained Molecular Dynamics Simulation, OCTA, Grafted Polymer Film, Grafting Density

Top

References

  1. C. Creton, E. J. Kramer, H. R. Brown, and C.-Y. Hui, Adv. Polym. Sci., 156, 53 (2001).
  2. L. Leger, E. Raphael, and H. Hervet, Adv. Polym. Sci., 138, 185 (1999). | ISI |
  3. M. Deruelle, L. Leger, and M. Tirrell, Macromolecules, 28, 7419 (1995). | Article |
  4. H. Morita, M. Yamada, T. Yamaguchi, and M. Doi, Polym. J., 37, 782, (2005). | Article |
  5. S. T. Milner, T. A. Witten, and M. E. Cates, Macromolecules, 21, 2610 (1988). | Article |
  6. G. Grest, Adv. Polym. Sci., 138, 149 (1999). | ISI | CAS |
  7. M. Murat and G. S. Grest, Phys. Rev. Lett., 63, 1074 (1989). | Article | PubMed |
  8. M. Murat and G. S. Grest, Macromolecules, 22, 4054 (1989). | Article |
  9. G. S. Grest and M. Murat, Macromolecules, 26, 3108 (1993). | Article |
  10. A. R. C. Baljon, M. H. M. Van Weert, R. B. DeGraaff, and R. Khare, Macromolecules, 38, 2391 (2005). | Article |
  11. H. Morita, K. Tanaka, T. Kajiyama, T. Nishi, and M. Doi, Macromolecules, 39, 6233 (2006). | Article |
  12. K. Yoshimoto, S. J. Tushar, P. F. Nealey, and J. J. de Pablo, J. Chem. Phys., 122, 144712 (2005). | Article | PubMed |
  13. H. Morita, T. Ikehara, T. Nishi, and M. Doi, Polym. J., 36, 265 (2004). | Article |
  14. S. W. Sides, G. S. Grest, M. J. Stevens, and S. J. Plimpton, J. Polym. Sci., Part B: Polym. Phys., 42, 199 (2004). | Article |
  15. S. W. Sides, G. S. Grest, and M. J. Stevens, Macromolecules, 35, 566 (2002). | Article |
  16. S. W. Sides, G. S. Grest, and M. J. Stevens, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 64, 050802 (2001). | Article |
  17. G. S. Grest and K. Kremer, Phys. Rev. A: At., Mol., Opt. Phys., 33, 3628 (1986). | Article |
  18. K. Kremer and G. S. Grest, J. Chem. Phys., 92, 5057 (1990). | Article |
  19. http://octa.jp
  20. T. Aoyagi, F. Sawa, T. Shoji, H. Fukunaga, J. Takimoto, and M. Doi, Comput. Phys. Commun., 145, 267 (2002). | Article |
  21. M. L. Williams, R. F. Landel, and J. D. Ferry, J. Am. Chem. Soc., 77, 3701 (1955). | Article | ISI | CAS |

MORE ARTICLES LIKE THIS

These links to content published by NPG are automatically generated.