Regular Article

Polymer Journal (2005) 37, 782-788; doi:10.1295/polymj.37.782

Molecular Dynamics Study of the Adhesion between End-grafted Polymer Films

Hiroshi Morita1, Masamichi Yamada2, Tetsuo Yamaguchi1 and Masao Doi1

  1. 1Japan Science and Technology Agency & Department of Applied Physics, The University of Tokyo
  2. 2Department of Computational Science and Engineering, Nagoya University
Top

Abstract

Adhesion between two polymer films consisting of end grafted polymer is studied by coarse-grained molecular dynamics. Two types of polymer films are considered: one-end grafted polymer (the straight polymer) and the two-end grafted polymer (the loop polymer). The stress-distance curve for these polymers is obtained at various temperatures. It is found that (1) the separation between the films takes place by the formation of fibrils or cavities, and the adhesion is stronger in the former case than in the latter, (2) the fibrils appear in the case that the temperature is below one of the glass transition temperatures of the two films, and (3) the adhesion is stronger for the loop polymer than for the straight polymer because the glass transition temperature of the loop polymer is higher than that of straight polymer.

Keywords:

Coarse-grained Molecular Dynamics Simulation; OCTA; Loop Polymer; Grafted Polymer Surface

Top

References

1.
R. P. Wool, “Polymer Interfaces: Structure and Strength,” Hanser, Munich, 1995.
2.
L. Leger, E. Raphael, and H. Hervet, Adv. Polym. Sci., 138, 185 (1999). | ISI |
3.
G. Grest, Adv. Polym. Sci., 138, 149 (1999). | ISI | CAS |
4.
C. Creton, E. J. Kramer, H. R. Brown, and C.-Y. Hui, Adv. Polym. Sci., 156, 53 (2001).
5.
M. Deruelle, L. Leger, and M. Tirrell, Macromolecules, 28, 7419 (1995). | Article |
6.
A. C. Costaa, A. Chicheb, P. Vlcek, C. Creton, and R. J. Composto, Polymer, 45, 4445 (2004). | Article |
7.
L. A. Tsarkova, P. V. Protsenko, and J. Klein, Colloid J., 66, 84 (2004). | Article |
8.
S. W. Sides, G. S. Grest, M. J. Stevens, and S. J. Plimpton, J. Polym. Sci., Part B: Polym. Phys., 42, 199 (2004). | Article |
9.
S. W. Sides, G. S. Grest, and M. J. Stevens, Macromolecules, 35, 566 (2002). | Article |
10.
S. W. Sides, G. S. Grest, and M. J. Stevens, Phys. Rev. E: Stat. Phys., Plasmas, 64, 050802 (2001).
11.
H. Morita, T. Ikehara, T. Nishi, and M. Doi, Polym. J., 36, 265 (2004). | Article |
12.
J. Klein, J. Phys.: Condens. Matter, 12, A19 (2000). | Article |
13.
K. P. O’Connor and T. C. B. McLeish, Macromolecules, 26, 7322 (1993). | Article |
14.
M. Murat and G. S. Grest, Macromolecules, 22, 4054 (1989). | Article |
15.
http://octa.jp
16.
T. Aoyagi, F. Sawa, T. Shoji, H. Fukunaga, J. Takimoto, and M. Doi, Comput. Phys. Commun., 145, 267 (2002). | Article |
17.
G. S. Grest and K. Kremer, Phys. Rev. A: At., Mol., Opt. Phys., 33, 3628 (1986). | Article |
18.
K. Kremer and G. S. Grest, J. Chem. Phys., 92, 5057 (1990). | Article |