
Polymer Journal, Vol. 34, No. 7, pp 479—509 (2002)

REVIEWS

Theoretical Study of Molecular Association and Thermoreversible
Gelation in Polymers

Fumihiko TANAKA

Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606–8501, Japan

(Received April 1, 2002; Accepted May 7, 2002)

ABSTRACT: This paper reviews our recent theoretical studies of molecular association and thermoreversible gela-
tion in polymer solutions and blends. We first classify fundamental types of association, and propose their static and
dynamic characterization. We then develope general theory of associating polymers to study phase transitions induced
by molecular association. These transitions include macro- and microphase separation, micellization, hydration, ther-
moreversible gelation and liquid-crystalization. As for the origin of associative forces, we focus on hydrogen bonding
and hydrophobic aggregation. Detailed study on thermoreversible gelation with multiple cross-link junctions is presented.
Paying special attention to the multiplicity and sequence length of the network junctions, we derive phase diagrams with
coexisting gelation and phase separation, and compare them with experimental data. Local and global structures of the
gel networks are studied from molecular point of view. The theory is applied to more complex thermoreversible gels such
as binary networks (interpenetrating networks, alternating networks and randomely mixed networks), hydrated networks
with high-temperature gelation, gelation strongly coupled to polymer conformational transitions such as coil-to-helix
transition. To study dynamics of thermoreversible gels, a simple transient network model is introduced, and creation and
annihilation of junctions in the networks are theoretically described. Stationary non-linear viscosity and the dynamic
mechanical moduli are calculated as functions of the shear rate, frequency and the chain disengagement rate. From the
peak of the loss modulus, the lifetime τ× of the junction is estimated, and from the high frequency plateau of the storage
modulus, the number of elastically effective chains in the network is found. Transient phenomena such as stress relax-
ation and stress overshoot are also theoretically studied. Results are compared with the recent experimental reports on
the rheological study of hydrophobically modified water-soluble polymers.

KEY WORDS Associating Polymers / Thermoreversible Gelation / Junction Multiplicity / Multi-
criticality / Transient Networks / Shear Thickening / Elastically Effective Chains /

This paper reviews our recent theoretical studies
of molecular association and thermoreversible gelation
in polymer solutions. We introduce new theoretical
frameworks to study phase transitions induced by as-
sociation of polymer chains and dynamics of aggrega-
tion/dissociation processes.

In most polymer blends or solutions, polymer chains
carry active groups interacting with each other via
strongly associative forces which are capable of form-
ing temporal bonds. Hence description of the system
in terms of van der Waals type contact energy — or
χ-parameter in lattice theoretical terminology — is in-
sufficient. These associative interactions include hy-
drogen bonding, ionic aggregation, electrostatic inter-
action, micro-crystallite formation, stereocomplex for-
mation, solvent-complex formation, etc. Since the bind-
ing energy is of the order of thermal energy, bond for-
mation is reversible; bonds are created and destroyed
by the change in temperature and concentration. Ex-
tensive polydispersity inherent to such associating so-
lutions is therefore thermally controlled. The spa-
tial and temporal organizations in polymeric materials
formed by such associative forces are one of the un-

investigated important subjects in the polymer science
yet to be explored. Typical examples of these organi-
zations are (hetero-)dimerization, solvation, micelliza-
tion, thermoreversible gelation, liquid-crystallization
and various mesophase formation. Consideration of
such associative interactions superimposed on the fa-
miliar description of statistical chains can lead to the
application of the polymer science in numerous sys-
tems of practical importance. Polymers interacting by
associative forces also exhibit characteristic rheological
properties such as shear thickening, stress overshoot,
etc. so that they imply vast industrial applications as
rheology control agents.

The strength of association is generally described by
the association constant defined by

λ(T ) ≡ exp(−β∆ f0), (1)

where β ≡ 1/kBT is the reciprocal temperature, and ∆ f0
the standard free energy change on binding a single as-
sociative group into an aggregate, or a network junc-
tion. If the associative group (or chain block) consists
of ζ statistical segments, as in aggregation of hydropho-
bic short chains, the free energy change can be written
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as

∆ f0 = ζ(∆h − T∆s) (2)

by the use of the binding enthalpy ∆h and entropy ∆s
per statistical unit. The number ζ is called the sequence
length of a junction.

Another important structural parameter of a junction
is its multiplicity. The multiplicity k is defined by the
number of groups combined together in a single ag-
gregate. A cross-link by covalent bond has multiplic-
ity k = 2 because of the pairwise bonding. However,
since most thermoreversible gels have multiple cross-
links,1–5 multiplicity is an important concept in study-
ing association of polymer chains.

From a dynamic point of view, the time scale of reor-
ganization in the network junctions is characterized by
the average duration time τ× for an associative group
to be in a bound state. It is governed by the free en-
ergy barrier ∆F† separating the bound state from the
free one :

τ× = τ0 exp(β∆F†). (3)

(τ0 being a microscopic time of monomer motion.) The
rheological time scale governing the dynamics of tran-
sient networks can therefore be adjusted by this barrier
height in the associative interaction.

Paying special attention to such important structural
and dynamic parameters, we first introduce equilib-
rium statistical-mechanical theory of associating poly-
mer solutions, and then examine the results of its ap-
plication to specific important problems by focusing
on thermoreversible gelation. We then move onto dy-
namics of transient polymer networks. We introduce
molecular picture for studying rheological properties of
thermoreversible gels, calculate stationary and transient
flow properties, and compare with experiments.

THERMODYNAMIC THEORY OF
ASSOCIATING POLYMERS

Model Associating Polymers

Stoichiometric Definition of the Mixture
Consider a binary mixture of linear polymers A and

B. The number of statistical units on a chain is assumed
to be nA for an A chain and nB for a B chain. It is also
assumed that each chain carries a fixed number f (for
A chain) and g (for B chain) of reactive groups capa-
ble of forming reversible bonds. In thermal equilib-
rium, forces working among associative groups form
intermolecular clusters with a wide range of aggrega-
tion number. If either of the functionalities exceeds
three, a cluster grows to macroscopic dimensions as

soon as a threshold in temperature or in composition
is reached. Above the threshold a three-dimensional
network, most generally comprized of the two compo-
nents, is formed.1–5 To describe network formation, we
start from a lattice theoretical picture.6–9

Let us first divide the total volume V of the system
into small cells of size a of the monomeric units on a
chain.6 We then have total number Ω ≡ V/a3 of the
microscopic cells. We first specify the part of the sys-
tem containing only finite-size clusters, which will be
referred to as sol. Let Nl,m be the number of (l,m) clus-
ters consisting of l A-chains and m B-chains. The total
volume fraction of A-chains in the sol is given by

φS
A = nA

∑
l,m

lνl,m , (4)

where νl,m ≡ Nl,m/Ω is the number of clusters (per lat-
tice cell). Similarly, the total volume fraction of B-
chains in the sol is given by

φS
B = nB

∑
l,m

mνl,m . (5)

The total volume fraction of the sol in the system is
given by φS = φS

A + φ
S
B. This should be equal to unity

for nongelling systems, or pregel regime of gelling sys-
tems, but can become smaller than unity as soon as an
infinite network — referred to as gel — appears, i.e.,
in the postgel regime. In the postgel regime, the vol-
ume fraction of i chains in the gel network is given by
φG

i = φi − φS
i for i = A and B, where φi is the exper-

imentally controlled volume fraction (or composition)
of the species i. Since we have an identity φA + φB = 1,
we can take φA as an independent variable, and write it
simply as φ. The volume fraction of B is then given by
φB = 1 − φ.

Free Energy of the Mixture
In order to study thermodynamic properties, we start

from the standard reference state in which unconnected
A-chains and B-chains are prepared separately in a hy-
pothetical crystalline state.6, 8 We first consider the free
energy change ∆Frea to bring the system to a fictitious
intermediate state in which the chains are disoriented
and connected in such a way that the cluster distribution
is exactly the same as the real one.12, 13, 19 It is given by

β∆Frea/Ω =
∑
l,m

∆l,mνl,m + δAν
G
A + δBν

G
B , (6)

where ∆l,m is the free energy produced when a single
(l,m) cluster is formed from l A-chains and m B-chains.
Let µ◦l,m be the internal free energy of an (l,m) cluster.
The free energy difference ∆l,m is then given by

∆l,m = β(µ
◦
l,m − lµ◦1,0 − mµ◦0,1). (7)
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Under a constant pressure, µ◦l,m is equivalent to the in-
ternal free energy produced by combination, configu-
rational change, and bond formation of the constitu-
tional chains. Similarly δi (i = A,B) is the free energy
change produced when an isolated chain of the species
i is connected to the gel network. They are given by
δA = β(µ◦GA − µ◦1,0), and δB = β(µ◦GB − µ◦0,1), where

µ◦Gi is the chemical potential of the species i in the gel
network.

In the second step, we mix these clusters to get to a
real mixture. According to the conventional lattice the-
ory 8, 9 of polydisperse polymer mixtures, the mixing
free energy ∆Fmix in this process is given by

β∆Fmix/Ω =
∑
l,m

νl,m ln φl,m + χφ(1 − φ), (8)

where φl,m ≡ (nAl + nBm)νl,m is the volume fraction of
(l,m)-clusters, χ the Flory χ-parameter which specifies
the strength of the van der Waals type contact interac-
tion between the monomers of different species. This
χ-parameter varies with the temperature, but is inde-
pendent of the composition. The total free energy from
which our theory starts is given by the sum of the above
two parts:

∆F = ∆Frea + ∆Fmix. (9)

By differentiation with respect to the number Nl,m of
the clusters, we find their chemical potential µl,m.

Pregel Regime
To find the equilibrium distribution of clusters, we

impose multiple equilibrium conditions

∆µl,m = l∆µ1,0 + m∆µ0,1 (10)

for all possible combinations of the integers (l,m).
Upon substitution of the specific forms of the chemi-
cal potentials, we find 12 that the volume fractions of
the clusters are given by

φl,m = Kl,mxlym, (11)

where we have written as x and y for simplicity for
the unimer concentrations φ1,0 and φ0,1. The new con-
stant Kl,m (called equilibrium constant) is defined by
Kl,m ≡ exp(l+m− 1−∆l,m), which depends only on the
temperature through ∆l,m. The total volume fraction φS

and the total number νS of clusters in the sol is then
found by the infinite sum:

φS(x, y) =
∑
l,m

Kl,mxlym. (12)

Sol/Gel Transition and Postgel Regime
So far we have tacitly assumed that the infinite dou-

ble summation in φS (and hence in νS ) converges.

These are double power series with positive coeffi-
cients, so that they are monotonically increasing func-
tions. For a solution capable of gelling, a borderline ex-
ists which separates the unit square on the (x, y) plane
into a convergent region and a divergent one. Exactly
on the boundary line, the sol composition φS takes a fi-
nite value, but it diverges outside this line. Since the
radius of convergence generally depends on the com-
position, let us express the boundary by a paramet-
ric representation (x∗(φ), y∗(φ)) for 0 ≤ φ ≤ 1. The
value φS (x∗, y∗) can become smaller than unity for cer-
tain region of the concentration and the temperature
corresponding to the postgel regime. Hence we can
find the sol/gel transition line by mapping the condi-
tion φS(x∗, y∗) = 1 onto the temperature-concentration
plane.

In the postgel regime, a chain participating in the
gel network must be in a chemical equilibrium with an
unassociated chain of the same species. This imposes
the additional conditions

∆µ1,0 = ∆µ
G
A and ∆µ0,1 = ∆µ

G
B , (13)

we find

x∗ = exp(δA − 1) and y∗ = exp(δB − 1), (14)

for the gelling component. Asterisks indicate that they
refer to the quatities after the gel point.

Solution Properties

Let us now find some important physical quatities
characterizing the mixture.

(1) Osmotic Pressure The osmotic pressure π of the
A component is essentially the chemical potential of the
B species with opposite sign, and given by

βπ/nBa3 = −(1 + log y)/nB + ν
S(x, y) − χφ2, (15)

in the pregel regime. In a polymer solution in which B
component is a low molecular weight solvent (nB = 1),
this definition reduces to the osmotic pressure in the
conventional meaning. If we expand this pressure with
nB = 1 in powers of the concentration, we have the
virial series

πa3/kBT = φ/nA + A2φ
2 + A3φ

3 + · · · . (16)

The second virial coefficient has a reduction ∆A2 from
1/2 − χ due to the associative interaction.

(2) Phase Separation The two-phase equilibrium
conditions, or a binodal lines can be found by balancing
the chemical potential of each component:8, 9

∆µA(φ′, T ) = ∆µA(φ′′, T ), (17)

∆µB(φ′, T ) = ∆µB(φ′′, T ), (18)
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where φ′ and φ′′ are the composition of the dilute
A phase and concentrated A phase respectively. If
the concentrated phase lies inside the postgel regime,
the r.h.s. of these equations must be replaced by
∆µ∗A(φ′′, T ) and ∆µ∗B(φ′′, T ).

(3) Stability Limit The thermodynamic stability
limit or a spinodal line can be found for the binary sys-
tem by a single condition (∂∆µA/∂φ)T = 0, or equiva-
lently ∂(∆µA/nA − ∆µB/nB)/∂φ = 0. Our result leads
to the equation

κA(φ)
nAφ

+
κB(φ)

nB(1 − φ) − 2χ = 0, (19)

where the new functions are defined by

κA(φ) ≡ φ∂ log x/∂φ and

κB(φ) ≡ −(1 − φ)∂ log y/∂φ. (20)

For homopolymer association where only A-chains are
associated, for instance, κA reduces to the reciprocal of
weight-average cluster size as in the polydisperse poly-
mer solutions.9, 14 In heteropolymer association, how-
ever, κ’s are related to the average cluster sizes in a
more complicated ways.

Microphase Formation

In order to find the condition for the microphase
formation,15 we next calculate the correlation function
S (q) of the concentration fluctuation. This function is
directly measurable in the X-Ray or neutron scattering
experiments as a function of the wave vector, tempera-
ture and concentration. When it is infinitely enhanced
at a certain finite wave number q, it is the precursor of
instability against the concentration fluctuation whose
spatial variations have a characteric length q−1, thus
leading to the formation of an ordered state with the pe-
riodicity q−1. In the case of block copolymers, the do-
main size q−1 is of the order of the radius of gyration of
a single polymer chain, and hence called a microphase
separation transition (MST). From the same viewpoint,
we can also find the macroscopic stability limit — or
spinodal condition (SP) discussed in the preceding sec-
tion — from the condition S (q = 0) = ∞, which is
equivalent to the divergence of the osmotic compress-
ibility.

In order to obtain a specific form of the correlation
function S (q), we employ random phase approxima-
tion (RPA).16 RPA provides a classical treatment of
concentration fluctuations for the incompressible mix-
tures of very large molecular-weight molecules. It as-
sumes a self-consistent potential uniformly acting on
all species of monomers to ensure the incompressibil-
ity condition. The detail of RPA method, as applied to

our polydisperse copolymer blend, leads to

S (q) = 1/{G(q)/W(q) − 2χ}, (21)

where G(q) ≡ S ◦AA(q)+ S ◦BB(q)+ 2S ◦AB(q), and W(q) ≡
S ◦AAS ◦BB(q)−[S ◦AB(q)]2 are both related to the intraclus-
ter scattering functions (superscript ◦ shows the scat-
tering intensity arising from a single cluster).16 For our
associating blends, clusters are characterized by the set
of two figures (l,m), so that S ◦A,B for the monomer cor-
relation function between A and B species, for exam-
ple, transforms into S ◦AB(q) =

∑
l,m Clm(q)νl,m, where

Clm(q) is the monomer correlation functions within an
isolated single cluster of the type (l,m).17, 18 The diver-
gence condition for S (q) leads to

G(q)/W(q) − 2χ = 0 (22)

within the framework of RPA. If this condition is sat-
isfied for finite q, the system becomes unstable against
the fluctuation in the concentration whose spatial di-
mensions are characterized by q−1. If it is satisfied for
q = 0 on the other hand, it is unstable against demix-
ing into two coexistent macroscopic phases. It can
be shown that the latter condition is equivalent to the
eq 19.

SOME IMPORTANT EXAMPLES OF
NON-GELLING ASSOCIATING MIXTURES

We first show some of the important results obtained
so far for the non-gelling mixtures. In this section, we
assume pairwise bonding between associative groups.
The strength of the bonds can be expressed in terms of
the association constants defined by

λAA ≡ exp(−β∆ fAA), λBB ≡ exp(−β∆ fBB),

λAB ≡ exp(−β∆ fAB), (23)

for three combination of pairs,20 where ∆ f ’s are the
standard free energy changes on bonding. To prevent
gelling, we assume that the functionalities of either or
both species of polymers are less than or equal to two
in this section.

We apply our general theory presented above, and
summerize the main results in the form of phase dia-
grams. For the numerical calculation we introduce the
reduced temperature deviation τ ≡ 1 − Θ/T from the
unperturbed theta temperature Θ which is defined by
the equation χ(Θ) = 1/2nB. The unrenormalized sec-
ond virial coefficient of the osmotic pressure vanishes
at this temperature. We then assume the Shultz–Flory
form 8, 21 χ(T ) = 1/2 − ψ1τ for the bare interaction
parameter, where ψ1 is a material parameter of order
unity. For any one of the association constant λ(T ),
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Figure 1. A typical phase diagram of associating diblock
copolymers in which macro- and microphase separation compete.
Binodal (solid line), spinodal (dotted line) and MST (broken line)
are drawn. Critical points are indicated by CP. At the crossing of
spinodal and MST line, Lifshitz points (LP) appear. At the stoi-
chiometric composition where the number of A groups equals that
of B groups, an eutectic point appears.

we rewrite as λ(T ) = λ0 exp[γ(1 − τ)] with the dimen-
sionless binding energy γ ≡ ∆ε/kBΘ and the constant
λ0 ≡ exp(∆s/kB) which is related to the entropy change
∆s for bonding.10, 11

Dimer Formation and Side-Chain Association

The first system we study is a mixture of A- and
B chains in which diblock copolymers are formed by
the end-to-end association (hetero-dimerization).17 For
such mixtures we have f = g = 1 and λAA =

λBB = 0, λAB > 0. A composite chain formed is
a diblock copolymer A·B with a temporal junction in
the middle. The system is made up of a mixture of
diblock copolymers, and unassociated homopolymers
of each species. It is apparently same as a mixture of
chemically connected diblock copolymers dissolved in
their homopolymers,22, 23 but its phase behavior is in
fact much richer, because the population of the block
copolymers varies by the change in the temperature and
the composition.

Figure 1 shows theoretical calculation of the phase
diagram for a symmetric blend where both chains have
the same length.17 Solid lines show the binodal, the bro-
ken lines MST, and dotted lines the spinodal. MST and
spinodal meet at the two symmetric points (indicated
by LP), at which the two conditions eqs 19 and 22 re-
duces to a single one. They are examples of the Lifshitz
point,— the point where an order parameter with finite
wave number starts to appear.24

The whole plane is divided into several regions, each
characterized by the capital letters in it. The region
with letter H has a homogeneously mixed fluid phase.
The regions shown by MS and MS’ exhibit microscop-
ically ordered phases in which microdomains are reg-
ularly ordered. A region with the letters “2Φ” in the
figure is a biphasic region (or miscibility gap) where
two distinct phases coexist. In the middle of the phase
diagram we have an eutectic point (indicated by the let-
ter e) where single microphase melt into the two co-
existent homogeneously mixed fluids when the tem-
perature is lowered. As the temperature is further
lowered, we observe that the miscibility gap starts to
split again at the point e’ in the center of the con-
centration axis, and a new homogeneous microphase
(shown by MS’) becomes stabilized in between. The
low-temperature microphase—which should be called
a reentrant microphase—is stabilized simply because
the population of block copolymers produced becomes
so large in this low-temperature region that they ho-
mogenize the two demixed fluid phases into a single
one.

Typical ordered phases experimentally confirmed re-
cently are those induced by hydrogen bonds.25–27 The
hydrogen bond leads to thermoreversible MST if it is
strong enough compared to the repulsive interaction
between the polymer segments but still weak enough
to break by temperature. Unfortunately, dimer for-
mation turned out to be not strong enough. Ruoko-
lainen and his coworkers 28–30, 32 have recently ob-
served MST in the mixture of poly(4-vinyl pyridine)
(P4VP) and surfactant molecules 3-pentadecyl phenol
(PDP). In this sytem the hydrogen bonding between the
hydroxyl group in PDP and the basic aminic nitrogen
in the pyridine group leads to the formation of comb-
shaped block copolymers with densely grafted short
side chains (called molecular bottlebrush31). They ob-
served a lamellar structure at low temperatures. The
lamellar period L was found to decrease in propor-
tion to the reciprocal of x, the fraction of surfactant
molecules per pyridine group in P4VP. It was also
found that the MST temperature takes a minimum value
(easiest MST) near the stoichiometric concentration
x = 1. Our theory can readily be extended to such
side-chain associations. An example of the phase di-
agram for associating comb polymers is shown in Fig-
ure 2. The structures of possible mesophases inside MS
region were recently studied by ten Brinke et al.30, 31

Hydration in Aqueous Polymer Solutions

The next system we consider is a polymer solution in
which solvent molecules (nB = 1) attach onto the poly-
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Figure 2. Phase diagram in which macro- and microphase sep-
aration compete by comb-shaped side-chain association. nA =

1000, f = 200, nB = 10, λ0 = 1.0, γ = 6.0. Homogeneous liquid
phase (H), microphase separated region (M), unstable region (U)
are shown. MST is easiest at the stoichiometric composition indi-
cated by φst . Critical solution point (white circle) and Lifshitz point
(black circle) are indicated. Metastable regions inside M region are
indicated by horizental thin lines.

mer chains (nA = n) by reversible bonds ( f large pro-
portional to n, g = 1, and λAB > 0, λAA = λBB = 0). We
call this phenomenon solvation.33 Hydration in aque-
ous polymer solutions by hydrogen bonds is the most
important example. Our model predicts that the sol-
vation can lead to the peculiar types of phase separa-
tion with closed-loop and hour-glass type miscibility
gaps.33

Figure 3 shows a possible phase diagram. In this fig-
ure we fix the parameters as λ0 = 0.002, and γ = 3.5
(from the measured strength of the hydrogen bond in
a solution) for a typical example. The number of the
statistical unit on a polymer chain is varied from curve
to curve. The number f of attaching sites on a polymer
chain is assumed to be proportional to the number of
statistical units. The open circles show critical solution
points. The solid curves show binodals, and the dashed
curves spinodals. For such a small value of λ0, there
are two miscibility gaps for small molecular weights:
one miscibility dome and one closed loop above the
dome (see n = 102 curve). The closed loop 34–37 has
one upper critical solution temperature (UCST) on the
top and one lower critical solution temperature (LCST)
on the bottom. The dome has an ordinary UCST. As
the molecular weight is increased, the LCST and the
UCST of the dome come closer and closer, and at cer-
tain value of n (1670 in this figure) the two points merge
into a higher order critical point (it is called double crit-

λ 

τ 

Figure 3. Phase diagram of hydrated polymer solutions. The
segment number n is varied from curve to curve. Binodals (solid
lines) and spinodals (broken lines) are drawn. The critical solution
points are indicated by white circles. LCST and UCST approaches
and eventually merges into an hour-glass by increasing the polymer
molecular weight. The phase separation loop vanishes by decreas-
ing the polymer molecular weight.

ical point).38 For the molecular weights higher than this
critical value, the two gaps merge into a single hour-
glass. On the contrary, the miscibility loop shrinks with
decrease in the molecular weight, and eventually van-
ishes at a certain critical molecular weight (n = 37 for
this case). This vanishing loop is called hyper criti-
cal point. For a slightly higher value of λ0, however,
it was found that the two gaps remain separated no
matter how large the molecular weight may become.33

There are three theta temperatures under such condition
to which each critical point approaches in the limit of
high molecular weight. For a still larger value of λ0,
the closed loop gap does not appear, and we are left
with an ordinary miscibility dome. Since the parame-
ter λ0 is small if the entropy loss during the bond for-
mation is large, there must be a strong orientational or
configurational constraint in the local geometry for the
appearance of an hour-glass.

Figure 4 shows the comparison 33 of theoretical cal-
culation with the observed phase diagram 39, 40 for
polyethylene oxide (PEO) in water. The number av-
erage molecular weight covers the range 2.17 × 103 −
1.02 × 106. The solid curves show the calculated bin-
odals. The number n of the statistical units on a chain
is varied from curve to curve. The parameters used
for fitting are: ψ1 = 1,Θ = 730K, γ = 6, and λ0 =

1.66 × 10−5. Fitting is made mainly by adjusting the
unkown parameter λ0. The agreement is very good.
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Figure 4. Phase diagram of aqueous poly(ethylene oxide)
(PEO) showing closed-loop miscibility gap. Theoretical curves
are fitted to the experimental data of the cloud points measured
by Saeki et al. The miscibility loop expands with increase in the
molecular weight. The UCST phase separation expected at low
temperature cannot be seen by crystalization of PEO.

Hydrogen-Bonded Supramolecules

Some rigid molecules are known to undergo liquid
crystallization when hydrogen-bonded to each other.
For example, aromatic acid derivatives with alkoxy
or alkyl terminal groups form dimers due to hydro-
gen bond between their carboxylic acid groups, and
show mesomorphism.41–44 Association between differ-
ent species of molecules also induces the isotropic/
anisotropic phase transition.27, 45, 46 Mesophases of
some liquid-crystalline molecules are stabilized by hy-
drogen bond with different species of molecules. More
markedly, some non-mesogenic molecules form a com-
pound with a mesogenic core when hydrogen bonded.
Compounds formed by hydrogen bonds are often called
“supramolecule”, because molecules assemble into su-
perstructures. A supramolecule with liquid crystallinity
is called “supramolecular liquid crystals”. Supramolec-
ular liquid crystals exhibit various new properties and
functions. For example, they are easily switched be-
tween isotropic phase and anisotropic one by chang-
ing thermodynamic conditions. Those reported so far
have various molecular architectures. For a mixture of
two different species of molecules A and B, each carry-
ing at least one rigid part that form mesogenic core by

association, dimer type, trimer type, main-chain type,
side-chain type, combined type, and network type are
known.27, 47

To describe liquid crystallization by association, we
employ McMillan’s free energy 48, 49 as ∆Fori. It in-
cludes both orientational ordering of mesogenic cores
and translational ordering of their center of mass. We
then have

β∆Fori =

{
(− ln Z) +

1
2
ζ(η2 + ασ2)νM

}
NM (24)

in addition to eq 9, where NM is the total number of
mesogenic cores in the system, and νM ≡ NM/Ω is the
number of mesogenic cores produced by association.
These depend on temperature and composition. The
symbol η expresses nematic order parameter, σ smectic
order parameter, ζ nematic interaction parameter, and α
smectic interaction parameter. The partition function Z
refers to each mesogenic core and is defined by

Z(η, σ) ≡ 1
d

∫ d

0
dz

∫ 1

0
d cos θ exp{ζ[η

+ασ cos(2πz/d)]P2(cos θ)νM}, (25)

where d is the distance between the neighboring planes
in a smectic A structure on which the centers of mass of
mesogenic cores are located. In the following it is re-
ferred to as layer thickness. The symbol θ expresses the
angle between the longitudinal axis of each mesogenic
core and the preferential orientational axis. The func-
tion P2(x) ≡ (3x2 − 1)/2 is the Legendre polynomial of
degree 2.

We show an example of phase diagram calculted for
dimer formation. Figure 5 shows a phase diagram of a
symmetric mixture with nA = nB = 10, and n∗A = n∗B =
1. Other parameters are given by λ0 = 30.0, C = 0.3,
C1 = −0.5, and C2 = 0.05. The inset magnifies the im-
portant part in the Figure. Thin solid line is the I/N tran-
sition line, and thick solid line the N/Sm transition line.
Letters “I”, “N”, and “Sm” represent the state whose
free energy is lowest in each area. Dotted lines lim-
iting the hatched metastable region are binodals. The
dark gray area with “U” is the unstable region due to
the new mechanism described in the preceding section,
whereas the light gray area with “U′” is the conven-
tional unstable region due to demixing. White circles
represent critical solution points.

At high temperature, the coexistence region caused
by the I/N phase transition and that caused by repul-
sive interaction between the two different species of
molecules appear. The mixture separates either into
two I phases by the effect of mixing enthalpy or into
I phase and N phase by the I/N transition depending
upon the composition.
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Figure 5. Phase diagram of dimer-forming hydrogen-bonded supramolecular liquid crystal, and its partial magnification. Thin solid line
is the I/N transition line, thick solid line is the N/S transition line, and dotted line is the binodal. The hatched area is the metastable region.
The dark gray area with “U” is the unstable region due to entropy difference between two different species of N structures. The light gray
area with “U′” is the unstable region due to mixing two different species of molecules. White circle represents the critical solution point.
Parameters are fixed at nA = nB = 10, n∗A = n∗B = 1, λ0 = 30.0, C = 0.3, C1 = −0.5, C2 = 0.05, and α = 0.5.

At intermediate temperature, the two coexistence re-
gions merge, but the U region and the U′ region remain
separate. From such a structure of the phase diagram,
two-step phase separation is possible; the mixture first
separates into two metastable I phases or metastable I
and N phase, and then into stable I and N phase. For
example, when the mixture is quenched to black tri-
angle point in Figure 5, it separates temporarily into
metastable I and N phase (white square) by the driv-
ing force based on the I/N transition, and eventually
into stable I and N phase (black square) by cooperative
driving force due to the I/N transition and the demix-
ing. It is, however, also possible that larger fluctuations
in spinodal decomposition lead to direct separation into
stable I and N phase.

At lower temperature, two unstable regions U and U′
also merge, so that the mixture separates directly into
stable I and N phase, or into stable I and Sm phase by
the cooperative driving force.

If we divide the phase diagram into two at the mid-
dle and see the left half, it is similar to a theoretical
phase diagram of a lyotropic liquid crystal first derived
by Flory 50, and later confirmed by an experiment by
Miller et al.51 The narrow I/N coexisting region extend-
ing from the macroscopic phase separation region is
called “chimney”. In lyotropic liquid crystals, the chim-
ney goes straight up to high temperature, but our results
show that in supramolecular liquid crystals there is a
limiting temperature of chimney, because the number
of mesogenic cores decreases with increasing tempera-

ture.

THERMOREVERSIBLE GELATION

Let us move onto gelling solutions. We first study
simple pairwise association of functional groups on
polymer chains. Then, we generalize our theory to
multiple association. Finally, we study more general
mixtures where networks are formed by two species of
polymers.

Self-Association of Polymers

To study self assembly of polymer chains in solvents,
we consider a special case of our model binary mix-
ture 10–12 in which solute molecules A with the molec-
ular weight nA ≡ n, each carrying f identical functional
groups, are mixed with low molecular weight (nB = 1)
solvent molecules B. Pairwise association only between
A groups is assumed (λAA > 0, λAB = λBB = 0). In
equilibrium state we have solvent (0, 1) and l-cluster
(l, 0), where l = 1, 2, 3 . . .. For simplicity, we contract
the double suffices into single ones, and write l for an
l-cluster, 0 for a solvent. We start from the free energy

β∆F =
∑
l≥1

Nl ln φl + N0 ln φ0 + χφ(1 − φ)Ω

+
∑
l≥1

∆lNl + δ(φ)N
G , (26)

where NG is the number of A molecules in the macro-
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scopic cluster. Such a macroscopic cluster has infinite
molecular weight and can take any geometry; it can be a
three dimensional branched network, an infinitely long
string, etc.

The multiple equilibrium condition leads to the vol-
ume fraction of the clusters to be given by

φl = Klφ
l
1, (27)

written in terms of the volume concentration φ1 of the
isolated molecules and the equilibrium constant Kl =

exp(l − 1 − ∆l).
We now consider the total amount of materials in the

sol:

φS(x, y) = y +
∞∑

l=1

Klx
l, (28)

where x ≡ φ1 for the solute and y ≡ 1 − φ for the sol-
vent. To study the infinite summation in this equation,
let us define the free energy gain δl ≡ ∆l/l when a sin-
gle chain participates in a cluster of the size l.

Application of the Cauchy–Hadamard’s theorem 52

gives the convergence radius x∗ of the power series in
the form

1/x∗ = lim
l→∞(Kl)

1/l = e1−δ∗ , (29)

where the least upper bound of the limit has been indi-
cated by a bar. The quatity δ∗ ≡ liml→∞ δl is defined by
the limiting value of δl as l→ ∞ In this special case of
homopolymer association, we have a linear boundary
in the unit square on the (x, y) plane which is parallel to
the y-axis. Within the radius of convergence, the nor-
malization condition φS (x, y) = 1 gives a one to one
relationship between φ and x.

Formation of several different spatial structures can
be seen from the behavior of δl. Figure 6 schematically
shows the exponent δl + 1/l− 1 of the equilibrium con-
stant K−1/l

l as a function of l. This function may either
take a minimum at a certain finite l (curve (I) and (III)
of Figure 6) or decreases monotonically to a finite value
δ∗ − 1 (curve (II)). Let l0 be the value of l at which the
curve reaches the minimum (including l0 = ∞ for the
monotonic case). The cluster size l for which the vol-
ume concentration φl becomes largest is given by

∂∆l/∂l = 1 + log x. (30)

Let l∗ be the solution of this equation.
In the case where l∗ is finite, the upper bound x∗,

when expressed in terms of the total concentration, is
called critical micelle concentration (cmc), since the
volume fraction of the clusters with aggregation num-
ber l∗ goes up to a finite fraction at this value of the vol-
ume fraction.53 Sharpness in their appearance is con-
trolled by the curvature of the function δl+1/l−1 around
l∗. At cmc, we have l0 = l∗.

φ

φ φ

δ mm

m m

Figure 6. The binding free energy per molecule as functions of
the aggregation number. Type I leads to micellization with finite
aggregation number. Type II and Type III lead to macroscopic ag-
gregates, such as infinitely long cylindrical micelles, three dimen-
sional networks. In the latter case, the volume fraction φ1 of the
molecules that remain unassociated in the solution as a function of
the total volume fraction φ of the molecules shows a singularity at
the point where the weight average molecular weight of aggregates
becomes infinite.

In the case where l∗ is infinite, on the contrary, a
macroscopic cluster appears as soon as x exceeds the
critical value x∗ ≡ exp(δ∗ − 1).

The macroscopic clusters can be branched networks
(gels),4, 5 or infinitely long polymers 128 and mice-
lles.55–57 For brevity, we call the former case gelation
and the latter case polymerization (including worm-
like micellization). The total concentration φ∗ obtained
from x∗ gives the concentration at which this transition
takes place. It depends on the temperature through δ∗.
For φ above φ∗, the sum in φS (x, y) cannot reach φ. The
amount of shortage φ −∑φl goes into the macroscopic
clusters.

Application of Stockmayer’s Distribution

The simplest gelling binary mixture is a polymer so-
lution in which polymers form homopolymer networks
in solvents.10, 11

In order to derive the equilibrium constants, let us
introduce a simple model for the internal structure of
clusters. For the species A, we consider the identical
molecules made up of n statistical monomeric units.
Each molecule is carrying f functional groups capable
of pairwisely forming bonds. A cluster is assumed to
take a tree structure with no internal loops (called “Cay-
ley tree”). This is a crude approximation based on the
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classical molecular-field picture of gelation.8, 58, 59

We split the free energy into three parts:

∆l = ∆
comb
l + ∆conf

l + ∆bond
l (31)

as before.
To find the combinatorial part, we employ the en-

tropy for combining l identical f -functional molecules
to form a single Cayley tree. The classical tree statistics
gives

∆scomb
l = kB ln[ f lωl], (32)

where

ωl ≡ ( f l − l)!
l!( f l − 2l + 2)!

(33)

is Stockmayer’s combinatorial factor.59 The free energy
is given by ∆comb

l = ∆scomb
l .

For the conformational free energy, we employ the
lattice theoretical entropy of disorientation 6, 8 sdis(n)
for a polymer with n statistical units, and find

∆sconf
l = sdis(ln) − lsdis(n) = kB ln


(
σ(z − 1)2

zen

)l−1

l

 .
(34)

Finally, free energy of bonding is given by

∆bond
l = (l − 1)β∆ f0 (35)

because there are l − 1 bonds in a tree of l molecules,
where ∆ f0 is the free energy change for a single bond
formation.

Combining all results together, we find

Kl = f lωl

(
fλ
n

)l−1

, (36)

where

λ(T ) ≡ [σ(z − 1)2/ze] exp(−β∆ f0) (37)

is a temperature dependent constant. We call this con-
stant association constant.

The distribution of clusters eq 27 then gives for the
number density

λνl = ωlx
l, (38)

where the independent variable x here is defined by x ≡
fλφ1/n = fλν1, which gives the number of functional
groups fφ1/n carried by the isolated polymer chains
in the solution multiplied by a temperature shift factor
λ(T ).

From this distribution function, we can obtain aver-
age values of physical quantities. First, the total number
concentration of the finite clusters is given by

λ
∑
l≥1

νl = S 0(x). (39)

Their volume fraction is

λ

n

∑
l≥1

φl = S 1(x). (40)

Therefore, the number average of the cluster size is
given by

l̄n ≡
∑

lνl/
∑
νl = S 1(x)/S 0(x) (41)

and the weight average is

l̄w ≡
∑

l2νl/
∑

lνl = S 2(x)/S 1(x). (42)

These are written in terms of the moments

S k(x) ≡
∞∑

l=1

lkωl x
l (k = 0, 1, 2 · · ·) (43)

of the Stockmayer distribution.
These moments are most easily expressed by the ex-

tent α of reaction defined by the equation

x ≡ α(1 − α) f−2. (44)

As a function of α, x takes a maximum value x∗ = ( f −
2) f−2/( f −1) f−1 at α = 1/( f −1). Therefore, two values
of α are decided for a given value of x. Let us consider
the smaller one for a while. We then have 0 ≤ α ≤
1/( f − 1).

By using α the average cluster sizes are given by

l̄n = 1/(1 − fα/2) ≡ Pn(α) (45)

l̄w = (1 + α)/[1 − ( f − 1)α] ≡ Pw(α). (46)

The weight average diverges at α = 1/( f − 1). This
suggests that α = α∗ ≡ 1/( f − 1) is the gel point. The
number average also diverges at α = 2/ f , but since
2/ f > 1/( f − 1), we have to study the postgel regime
to examine it. In the pregel regime where α < α∗
holds, the volume fraction φS occupied by the polymer
chains belonging to the sol must always equal the total
polymer volume fraction φ, since no gel network exists.
Thus the total polymer volume fraction φ and the extent
of association α satisfy the relation

fλ
n
φ =

α

(1 − α)2
. (47)

We can solve this equation for α. The result can be
expressed as

α =
1
2c

{
1 + 2c − √1 + 4c

}
(48)

in terms of the number concentration

c ≡ fλ(T )
n
φ (49)

of the functional groups (multiplied by the association
constant). We can then express all physical quantities
directly in terms of c.
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Let us next find the sol/gel transition point. The free
energy change δl per molecule is a steadily decreasing
function of l, approarching the limiting value δ∗ = 1 −
( f − 1) log( f − 1) + ( f − 2) log( f − 2) − log λ(T ). This
gives for the convergence radius of the series eq 60

φ∗1 = exp(δ∞ − 1)

or, equivalently,

x = x∗ = ( f − 2) f−2/( f − 1) f−1 (50)

in terms of x, and

α = α∗ = 1/( f − 1)

in terms of the extent of association as was expected
above from the divergence of l̄w. The volume fraction
of polymers at the gel point is then given by

λ

n
φ∗ =

f − 1
f ( f − 2)2

(51)

This gives sol/gel transition line on the temperature-
concentration plane.

Postgel Regime — Stockmayer’s Treatment vs. Flory’s
Treatment —

In the postgel regime where φ > φ∗ or α > α∗, we
have additional balance condition between the chamical
potential of a polymer chain in the sol part and the one
in the gel part.60 This equilibrium condition ∆µ1 = ∆µ

G

gives ln φ1 = δ(φ) − 1. The volume fraction of the un-
reacted chains is related to the binding free energy of a
chain onto the gel network.

Since the conversion in the sol can be different from
that in the gel, let us write the former as α′ and the
latter as α′′. The average conversion α of the solution
as a whole is then given by

α = α′wS + α
′′wG. (52)

The volume fraction φS of polymers belonging to the
sol is consequently given by

λφS/n = S 1(α′) (53)

in the postgel regime, so that it is different from the
total φ given in terms of α. The sol fraction wS here is
defined by

wS ≡ φS/φ = S 1(α′)/S 1(α), (54)

and hence the gel fraction is given by

wG = 1 − S 1(α′)/S 1(α). (55)

The number νS in the chemical potentials must also be
replaced by

νS = S 0(α′)/λ + 1 − φ (56)

since it gives the number of objects that have transla-
tional degree of freedom.

Flory’s Treatment
To find the extent of reaction in the sol and in the

gel, Flory considered 8 that the smaller root α′ of the
equation

x ≡ α(1 − α) f−2 (57)

for a given physically acceptable x corresponds to the
extent of reaction in the sol, and the larger one α gives
the average extent of reaction for all functional groups
in the system. The extent of association α′′ in the gel is
given by the eq 52.

The relation

α′(1 − α′) f−2
= α(1 − α) f−2 (58)

holds by definition. The volume fraction φS of poly-
mers in the sol is then given by

λ

n
φS =

α′

f (1 − α′)2
. (59)

On the contrary, the total polymer volume fraction φ
and the average extent of association α must be given
by eq 47.

Stockmayer’s Treatment
However, Stockmayer 59 later remarked that Flory’s

result in the postgel regime is inconsistent with the tree
assumption, since the treatment permits cycle forma-
tion in the gel network. To remove this inconsistency,
he proposed another treatment of the postgel regime.
He introduced a different assumption that the extent of
reaction of functional groups in the finite clusters re-
mains at 1/( f−1), its value at the gel point, i.e., α′ = α∗.
He also proposed that in the postgel regime the extent of
association in the gel network takes the value α′′ = 2/ f
appropriate to an infinite tree without cyclic structures.
The weight fraction wG of the gel then takes the form

wG =
( f − 1)α − 1

1 − 2/ f
, (60)

where α (> α∗) is the extent of reaction with respect to
the all functional groups. The volume fraction of the
sol φS remains constant at φS = φ∗. From a physical
standpoint, Flory’s model is closer to reality, since in-
tramolecular connections are an essential feature of the
network structure.

Figure 7 compares phase diagrams calculated by the
two different treatments of the postgel regime.60 The
binodals and spinodals appear in different positions.
For the same association constant, Stockmayer’s treat-
ment gives a tricritical point (TCP)61, 62 at the crossing
of sol/gel transition line and binodal (spinodal), while
Flory’s treatment gives a critical endpoint (CEP)62 at
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Figure 7. Comparison of the theoretical phase diagrams calcu-
lated by Flory’s treatment and Stockmayer’s treatment of the post-
gel regime for the same association constant. Flory’s treatment al-
lows cycle formation within the gel network, so that phase separa-
tion between dilute gel (with only a few cycles) and concentrated
gel (with many cycles) with a critical solution point (white circle
indicated by CP) is possible in the postgel regime.

the shoulder of the binodal and a critical point (CP) in
the postgel regime. Flory’s treatment allows cycle for-
mation within the gel network, so that phase separation
between dilute gel (with only a few cycles) and concen-
trated gel (with many cycles) in the postgel regime.

In Figure 8, we show a comparison between ex-
perimental phase diagram of atactic polystyrene (at-
PS) solution in carbon disulfide (CS2)63–65 and its the-
oretical calculation. This solution shows TCP type
phase diagram, but CEP types were also reported for
at-PS in different solvents.64 The molecular mecha-
nism of cross-linking has been the subject of a great
deal of works,4, 64, 66, 67 but there still remains a diver-
gence in opinions. One series of studies postulate 66

the existence of short crystallizable stereoregular seg-
ment sequences on polymer chains, even if they are at-
actic, that are responsible for the formation of micro-
crystalline junctions. Another studies 4, 67 propose that
cross-linking takes place by specific interaction such as
formation of stoichiometric compounds involving sol-
vent molecules. If such complex formation is the mech-
anism of cross-linking, the gelation temperature should
not show a steadily increasing function of the polymer
concentration, but should show a maximum at a certain
concentration.67 Existence of specific interaction was
also suggested by light scattering study of at-PS dilute
solution in toluene-CS2 mixture.68

φ
T

Figure 8. Phase diagram of atactic polystyrene in carbon disul-
fide. Thermoreversible gelation coexist with phase separation. The-
oretical sol/gel transition line (broken line), binodal (solid line)
and spinodal (dotted line) are drawn. Temperature is measured by
the reduced temperature τ ≡ 1 − Θ/T with the theta tempeara-
ture Θ = −70◦C. Experimental data of the gel points (black sym-
bols) and cloud points (white symbols) are shown for three different
molecular weights. Theoretical calculation is fitted to the data for
M = 9.06 × 104.

THERMOREVERSIBLE GELATION WITH
MULTIPLE JUNCTIONS

Most thermoreversible gels observed so far are cross-
linked by the formation of network junctions involv-
ing polymer segments belonging to several distinct
chains(multiple junctions). For instance, gelation by
micro-crystallization of the chain segments, by ionic
aggregation, and by hydrophobic association of special
groups attached on the polymer chains, all belong to
this important category.4, 5

Among these, associating polymers are very impor-
tant, because they form ultraweak networks in water.
The associating polymers are water-soluble polymers
carrying hydrophobic groups on the backbone or on the
chain side.13, 69

Typical model APs that have recently been the fo-
cus of study are water-soluble polymers partially mod-
ified by hydrophobic groups. One series of APs are
based on poly(ethylene oxide) chains (referred to as
PEO), being modified by short alkyl chains,70–74, 125

propyrene oxide (or butylene oxide) chains 77 and flu-
orocarbon chains.78–81 Hydrophobes are either period-
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ically or randomly attached on a polymer chain. The
simplest one is a telechelic polymer carrying two hy-
drophobes at the chain ends. Another series of APs
are based on cellulose derivatives. Some examples
are ethyl hydroxyethyl cellulose (EHEC)82–84 and hy-
droxypropyl methyl cellulose (HPMC).85, 86 Polyelec-
trolytes partially modified by hydrophobic groups have
also been intensely studied.87–91

Associative groups form aggregates, or micelles,
through hydrogen bonds, ionic attraction, hydrophobic
interaction, etc. Polymers with associative interactions
exhibit a variety of condensed phases, typical examples
of which are microscopically ordered phases, gels, and
liquid crystals.2–5 All of these phases have their coun-
terparts formed by covalently bonded polymers, but,
since association is thermally controllable, associating
phases provide a new pathway to modelling statistical
clusters, block copolymers, and reversible networks.
APs also exhibit characteristic rheological properties
such as shear thickening 70, 76, 125 at relatively low shear
rate, so that they imply vast industrial applications as
rheology control agents.

In this section, we extend our theory of network-
forming polymer solutions from pairwise association to
more general multiple association.

Multiple Association

As a model solution, we consider a mixture of as-
sociative molecules in a solvent. Molecules are distin-
guished by the number f of the associative (functional)
groups they bear, each associative group being capable
of taking part in the junctions with variable multiplicity
which may bind together any number k of such groups.
13, 92–94 We include k = 1 representing unassociated
groups. In what follows, we allow junctions of all mul-
tiplicities to coexist, in proportions determined by the
thermodynamic equilibrium conditions. Let nf be the
number of the statistical segments on an f -functional
molecule, and let N f be the number of f -functional pri-
mary molecules in the solution. The weight fraction wf

of the associative groups carried by the molecules with
specified f relative to the total number of associative
groups is then given by

w f = f N f /
∑

f N f . (61)

The number and weight average functionality of the pri-
mary molecules are then defined by

fn ≡ (
∑

w f / f )−1, (62)

and

fw ≡
∑

f w f . (63)

In thermal equilibrium, the solution has a distribu-
tion of clusters with a population distribution fixed
by the equilibrium conditions. Following the notation
used by Fukui and Yamabe,92 we define a cluster of
type (j, l) to consist of jk junctions of multiplicity k
(k = 1, 2, 3, . . .) and l f molecules of functionality f
( f = 1, 2, 3, . . .). The bold letters j ≡ { j1, j2, j3, . . .} and
l ≡ {l1, l2, l3, . . .} denote the sets of indices. An isolated
molecule of functionality f , for instance, is indicated
by j0 f ≡ { f , 0, 0, . . .}, and l0 f ≡ {0, . . . , 1, 0, . . .}.

The multiplicity of junctions is in principle deter-
mined by the equilibrium requirement for a given as-
sociative interaction. In the case of hydrophobic inter-
action, the chain length of a hydrophobe, the strength
of water-hydrophobe interaction, the geometric form of
an aggregate, and other factors determine the associ-
ation constant λ(T ) and the multiplicity of junctions.
In the present theoretical study, we avoid complexity
in finding the precise distribution of the multiplicity,
but instead, we introduce a model junction 13, 93, 94 in
which multiplicities lying in a certain range covering
from k = smin to smax are equally allowed. We thus
have

k = 1 (free), k = smin, smin + 1, . . . , smax

(associated). (64)

When only a single value is allowed, i.e., smin = smax ≡
s, we call the model fixed multiplicity model. Thus, for
s = 2, fixed multiplicity model reduces to pairwise as-
sociation. Such assumption of mini-max junction can
be to some extent justified in the molecular simulation
of AP described below by using a simple attractive po-
tential among associative groups.13, 94

Let N(j; l) be the number of (j; l)-clusters in the sys-
tem. Then their number density is given by ν(j; l) =
N(j; l)/Ω, and their volume fraction is given by

φ(j; l) =


∑
f≥1

nf l f

 ν(j; l), (65)

where Ω is the total number of lattice cells in the sys-
tem. The total volume fraction of the polymer compo-
nent is thus given by φ =

∑
j,l φ(j; l).

Theoretical Criterion of the Gel Point

As in the preceeding sections we start from the stan-
dard reference state (polymers and solvent molecules
being separated in hypothetical crystalline states). The
free energy change on passing from this reference state
to the final solution, at equilibrium with respect to clus-
ter formation, is given by the expression
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β∆F
Ω
= ν0 ln φ0 +

∑
j,l

ν(j; l)[∆(j; l) + ln φ(j; l)] + χφ0φ

(66)

in the pregel regime.93 The free energy change ∆(j; l)
accompanying the formation of a (j; l)-cluster in a hy-
pothetical undiluted amorphous state from the separate
primary molecules in their standard states is defined by

∆(j; l) ≡ β
µ◦(j; l) −

∑
f

l fµ
◦(j0 f ; l0 f )

 . (67)

In the postgel regime where a cluster grows to a macro-
scopic network, the free energy has an additional con-
tribution from the gel part.12, 93

Now, the chemical equilibrium conditions are given
by

∆µ(j; l) =
∑

l f∆µ(j0 f ; l0 f ). (68)

Now the free energy ∆(j; l) consists of three parts: com-
binatorial, conformational, and bonding ones. To use
the multiple tree statistics 92 for the combinatorial en-
tropy of cluster formation, we assume that all clusters
take tree form as in the classical literature.58, 59

To summerize the result, we introduce the extent α of
association, or conversion, that is defined by the prob-
ability for a randomly chosen associative group to be
associated. Let pk be the probability for a randomly
chosen group to be in the junction of multiplicity k. The
extent α is then expressed as

α ≡
∑
k≥2

pk. (69)

Then, p1 ≡ 1 − α is the probability for a hydrophobe
to remain unassociated. This is equivalent to the nor-
malization condition

∑
pk = 1. This condition indi-

cates that the total concentration ψ of the hydrophobes
should satisfy the relation

λ(T )ψ = zu(z), (70)

where the function u(z) to be used to characterize junc-
tions is defined by

u(z) ≡
∞∑

k=1

γkzk−1. (71)

The coefficient γk comes from the surface free energy
of an aggregate with multiplicity k. The parameter
z that appeared in the above relations is defined by
z ≡ λ(T )ψp1 = λ(T )ψ(1 − α), and gives the (reduced)
concentration of the hydrophobes that remain unasso-
ciated in the solution.

The next step is to calculate the weight-average
molecular weight of the clusters. From its divergence,

we find the sol/gel transition point. It is most generally
given by 92, 93

( fw − 1)(µw − 1) = 1, (72)

where fw defined by eq 63 is the weight average func-
tionality of the primary chains, and µw ≡ ∑

k≥1 kpk the
average multiplicity of the junctions. For monodisperse
functionality, this equation reduces to

( f − 1)zu′(z)/u(z) = 1. (73)

For a specific model of mini-max junction eq 64, we
have

u(z) = 1+
smax∑

k=smin

zk−1 = 1+ (zsmin−1 − zsmax)/(1− z) (74)

by neglecting possible contributions from micellar sur-
faces and setting all γk = 1 for smin ≤ k ≤ smax.

For example, the above normalization relation for the
fixed multiplicity model of monodisperse polymers ( f
and n definite) is given by

λ(T )φ/n = α1/s′/ f (1 − α)s/s′ , (75)

which connects the extent α of association to the
(scaled) polymer concentration. From here on, abbre-
viations f ′ ≡ f − 1 and s′ ≡ s − 1 are used.

The gel point condition eq 73 gives f ′s′α = 1 and
hence α = α∗ ≡ 1/ f ′s′ leading to the critical concen-
tration

λ(T )φ∗/n = f ′s′/ f ( f ′s′ − 1)s/s′ , (76)

T

s

φ
Figure 9. Sol/gel transition lines (thick broken lines), binodals
(thin broken lines) and spinodal lines (solid lines) of bifunctional
( f = 2) polymers with n = 100, λ0 = 10.0 for association with
fixed multiplicity (smin = smax ≡ s). Multiplicity s is changed from
3 to 8. The transition line shifts to high temperature and low con-
centration region with the multiplicity. Gelation is easier for larger
multiplicity.
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where φ∗ is the volume fraction of the polymer at gela-
tion. As the multiplicity is changed, with other pa-
rameters kept fixed, gelation concentration changes and
the sol/gel line shifts on the temperature-concentration
plane (Figure 9).

Phase equilibria and thermodynamic stability can be
studied by using chemical potentials of the polymer and
of the solvent. These are derived above by differentiat-
ing the free energy. Binodal curves and spinodal curves
can then be drawn on the temperature and concentra-
tion plane. In such AP solutions, gelation and phase
separation generally compete with each other, and as a
result phase diagrams with higher order critical points
such as tricritical point 61, 62 and critical endpoint 62 are
derived.93

STRUCTURE OF THE NETWORKS WITH
MULTIPLE JUNCTIONS

On passing the gel point, networks appear and coex-
ist with finite clusters. The structure of a network can
be studied from two different viewpoints: local view-
point and global one. The local structure of a net-
work focuses on the structure of each network junc-
tion, including its multiplicity, sequence length, de-
gree of chain packing, etc., while the global struc-
ture treats topological connectivity of the network as a
whole, paying special attention to the cycle rank (num-
ber of independent loops), number of elastically ef-
fective chains, number of dangling ends, average path
number of junctions, etc. Studies from such different
viewpoints are complementary to each other, and both
are necessary.

Local Structure of Networks — Augmented Eldridge-
Ferry Method —

When an associative group on a chain involves ζ se-
quential repeat units, we can write the standard free en-
ergy change as in eq 2. By taking the logarithm of the
gelation concentration eq 76, we find an important re-
lation

ln φ∗ = ζ
∆h

kBT
+ ln[

f ′s′n
f ( f ′s′ − 1)s/s′ ] − ζ

∆s
kB
. (77)

We can find multiplicity s and sequence length ζ by
comparing this relation with the experimental sol/gel
transition concentration.95 For the hydrophobes on as-
sociating polymers, the enthalpy ∆h of a cross-link is
found because ζ is known. For the micro-crystalline
junction formed by homopolymers, each ζ sequence of
repeat units along a chain surves as a functional group
for cross-linking. In such a case, a polymer chain is re-
garded as carrying f = n/ζ functional groups. Since

M

T

T

T

c

T M

Figure 10. Augmented Eldridge–Ferry plot applied to the
gel melting concentration of poly(vinyl alcohol)/water. Dotted
lines show the gel melting concentration at constant temperature,
while thin straight lines show those at constant molecular weight.
(�)91◦C; (•) 87◦C; (�) 83◦C; (�) 78◦C; (
) 74◦C; (©) 71◦C.

we have large n, and hence large f , we can neglect 1
compared to n or f , and are led to an equation

ln c∗ = ζ
∆h

kBT
− 1

s − 1
ln M + constant (78)

for micro-crystalline gels, where weight concentration
c∗ has been substituted for the volume fraction. This
equation enables us to find ζ and s independently. For
the special case of pairwise association s = 2, this equa-
tion reduces to the conventional Eldridge–Ferry equa-
tion.96

Let us plot ln c∗ against 103/T + ln M. Then the slope
−B of the line at constant T gives −1/(s − 1), while the
slope −A of the line at constant M gives

ζ =
103kB

|∆h| A =
103R
|(∆h)mol |A, (79)

where (∆h)mol is the enthalpy of bonding per mole of
the repeat units, and R the gas constant. We have ap-
plied this method to experimental data on the gel melt-
ing curves of several thermoreversible gels.97

As an example of such analysis, we show in Fig-
ure 10 the result for the gelation of poly(vinyl al-
cohol)(PVA) in water.97 PVA is known to be a typ-
ical crystalline polymer, but it also gels in aqueous
solution under large supercooling. There are sev-
eral pieces of experimental evidence that the cross-
links are formed by partial crystallization of the poly-
mer segments in which syndiotactic sequence domi-
nates, while subchains connecting the junctions con-
sist mainly of atactic non-crystalline sequences on PVA
chains. The micro-crystals at the junctions are sup-
posed to be stabilized by hydrogen bonds between
the hydroxy groups. We plot the gel melting tem-
perature found from differential scanning calorimetry
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(DSC) and visco-elastic measurements for PVA with
different molecular weights covering the range from
2 × 104 to 8 × 105 in various concentrations.98 The
gel melting temperature Tm is estimated from the tem-
perature at which the DSC heating curve shows an en-
dotherm peak. The slope of the solid lines with con-
stant molecular weight gives −A = 13.43 almost inde-
pendently of their molecular weights. Hence we find
ζ = 26.7 kcal mol−1/|(∆h)mol |. If we use the heat of
fusion (∆h)mol = 1.64 kcal mol−1 in the bulk crystal,
we find ζ = 16.3. On the other hand, the slope of the
dotted lines with constant temperature depends on the
temperature. At the highest temperature T = 91 ◦C
in the measurement, it is −0.38, while it gives a larger
value −0.9 at T = 71 ◦C. The multiplicity is estimated
to decrease from 3.6 for high-temperature melting to
2.1 for low-temperature melting, suggesting a very thin
junction structure. From thermodynamic stability of the
junctions it is natural that a gel which melts at lower
temperature has thinner junctions.

Global Structure of Networks — Elastically Effective
Chains —

To study visco-elastic properties of networks, we
next find the number νeff of elastically effective
chains.8, 99 The elastically effective chains are those
chains that transmit stress when the network is de-
formed by external force. They are related to the topo-
logical structure of the network. Let us first specify
the type of junctions from their connection paths to the
network matrix.95 A junction of multiplicity k that is
connected to the network matrix through i paths is re-
ferred to as an (i, k)-junction. Let µi,k be the number of
junctions in the network specified by the type (i, k) for
0 ≤ i ≤ 2k and for k = 1, 2, 3, 4, · · ·. The total number
of junctions with multiplicity k is given by

µk =

2k∑
i=0

µi,k. (80)

To find the number of elastically effective chains, we
next employ the criterion of Scanlan 100 and Case.101

It assumes that only subchains connected at both ends
to junctions carrying at least three paths to the gel are
elastically effective. We thus have i, i′ ≥ 3 for an effec-
tive chain. A junction with one path (i = 1) to the gel
unites a group of subchains dangling from the network
matrix whose conformations are not affected by an ap-
plied stress. A junction with two paths (i = 2) to the
gel merely extends the length of an effective subchain.
We may call a junction with i ≥ 3 an elastically effec-
tive junction. An effective chain is defined as a chain
connecting two effective junctions at both its ends. We

thus find

µeff =

∞∑
k=2

2k∑
i=3

µi,k (81)

for the number of elastically effective junctions, and

νeff =
1
2

∞∑
k=2

2k∑
i=3

iµi,k (82)

for the number of elastically effective chains.
A dangling end may consist either of a single sub-

chain or of a group of subchains connected by several
branch points. The structure of a dangling end can
be described by the number of subchains and branch
points it contains. By definition, the number of dan-
gling ends is given by

νend =

∞∑
k=2

2k∑
i=2

(2k − i)µi,k. (83)

The summation is taken over junctions with i ≥ 2 be-
cause a junction with only one path to the gel is just a
branch point on an already counted dangling end.

These topological relations hold for arbitrary net-
works. Their advantage lies in the fact that, by com-
binatorial counting, we can actually find µi,k as a func-
tion of the degree α of association.102 In our study,
the degree α is found as a function of the temperature
and concentration through the relation eq 70, so that
all topological numbers described above can be calcu-
lated as functions of the temperature and concentra-
tion.95 These curves can be compared with the exper-
imental data on the high frequency dynamic modulus
measured by Annable et al.70 Their experimental data
for HEUR C16/35K (PEO end-capped with C16H33,
molecular weight 35000) are compared with our the-
oretical calculation 95 for f = 2 in Figure 11. We have
chosen as c∗ = 1.0% for the weight concentration at
gelation. With this gel concentration, the scaling power
at the critical region gives t = 1.6, close to the percola-
tion value. 103 But since this power depends sensitively
on the way we choose c∗, more detailed experimental
examination in the critical region is eagerly required.
In fitting the data, we have horizontally shifted the ex-
perimental data because of the temperature pre-factor
λ(T ) and also because of the difference in the unit of
the polymer concentration. Although fitting by a single
theoretical curve is impossible due to the existence of
polydispersity in the multiplicity, our theory produces
correct behavior over a wide range of the concentration
with multiplicity ranging from 6 to 8. It turns out that
about 60% of chains are elastically effective at the limit
of high concentration.
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Figure 11. The number of elastically effective chains as a func-
tion of the polymer concentration. Experimental data of the HEUR
16C/35K are compared with theoretical calculation. In the theoret-
ical calculation the junction multiplicity is changed from curve to
curve.

APPLICATION TO COMPLEX
THERMOREVERSIBLE GELATION

The general theory of network-forming polymer so-
lutions and mixtures described above can be refined
and augmented to suit for the application to specific
problems. In what follows, we summarize some im-
portant results obtained so far on complex thermore-
versible gels.

Gelation of Hydrated Polymers

Natural polymers often gel on heating. Typical ex-
ample which has long been under intensive scrutiny is
methyl cellulose with nearly full degree of molar sub-
stitution by methoxyl groups.4, 85 Substitution by large
side-chain groups prevents polymers from crystalliza-
tion. In an aqueous solution at low temperatures, poly-
mer chains are covered with water molecules attached
by hydrogen bond (hydration) so that direct association
between polymer segments is prevented. As the tem-
perature is raised, chains gradually lose attached wa-
ters, and polymer-polymer association, which is initi-
ated by hydrophobic interaction, being stabilized by di-
rect hydrogen bonds, begins to take place. As dehydra-
tion proceeds, the number of direct interchain associa-
tion increases and eventually reaches a critical value for
the formation of an infinite network of polymers. It is
reversible in the sense that the gel liquefies to the orig-
inal constituency on cooling.85 Because the hydropho-

bic segments on polymer chains are partly exposed to
water in the gel regime, solution tends to separate into
two macroscopic phases. Thus gelation and phase sep-
aration compete as the temperature goes up, and the
solution reveals interesting multi-critical phase behav-
ior. A typical phase diagram showing co-occurrence of
gelation and phase separation, though very crude, was
reported in the literature.85, 104

Quite recently, formation of intra- and inter-
chain hydrogen bonds of cellulose derivatives (6-O-
methylcellulose and 2,3-di-O-methylcellulose) was di-
rectly observed 105 by Fourier transform infrared spec-
troscopy. The study revealed that primary hydroxyl
groups at the C-6 position of cellulose have strong ten-
dency to form interchain hydrogen bonds, while the
secondary hydroxyl groups at C-2 and C-3 positions
show no evidence of interchain coupling. Thus experi-
mental study of molecular mechanism for the formation
of network junctions is presently making a considerable
progress.

On the basis of the above molecular picture, we
choose nA = n and an arbitrary f for the polymer chain,
and nB = 1, f = 1 for the solvent molecule. We al-
low hydrogen bond of the type A·A and A·B, but ne-
glect B·B bond assuming that hydrogen bonds among
water molecules are weak compared to polymer-water
bonds. The association between A groups on the poly-
mer chains must be multiple association if they are hy-
drophobic groups, but here we assume it pairwise for
simplicity. We are now trying to remove this restriction
and generalize our theory to multiple cross-linking.

By the tree assumption, (l,m)-cluster has l − 1 cross-
links connecting l constituent polymer chains and f l −
2l + 2 unreacted functional groups, m of which are hy-
drated by solvent molecules. We employ Stockmayer’s
combinatorial factor (33) for the connection of the f -
functional polymers into a tree. For each connection of
the polymers, m attaching sites must be chosen out of
f l−2l+2 open sites for hydration. This selection gives a
binomial factor f l−2l+2Cm. The total combinatorial free
energy change then takes the form

∆comb
l,m = − ln

[
f l−2l+2Cm f lωl

]
. (84)

Upon substitution of this result into our general equa-
tions, we find that the number distribution of clusters is
given by

νl,m =
1
λ(T ) f l−2l+2Cm ωlx

lym +
1
µ(T )

yδl,0δm,1, (85)

where δ is the Kronecker’s delta. We have introduced
two parameters

x ≡ fλ(T )φ1,0/n and y ≡ µ(T )φ0,1, (86)
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Figure 12. Phase diagrams of hydrated gels in which gelation by polymer–polymer association competes with polymer-water hydrogen
bonding. Sol/gel transition lines (broken lines), binodals (solid lines) and spinodals (dotted lines) are shown. (a) For weak polymer–polymer
association, closed-loop phase separation region coexists with a low-temperature phase separation dome. There is no interference between
gelation and phase separation. (b) For intermediate association, sol/gel trantion line crosses the phase separation loop near the LCST of the
loop. This type of LCST interfered by high-temperature gelation is often observed in water-soluble polymers. (c) For strong association,
phase separation loop and dome merge and sol/gel transition line runs through it.

each corresponding to the number density of the iso-
lated molecules, being acompanied by the temperature
shift factor λ or µ. Here, temperature shift factors are
given by the association constants. When there is no
polymer-water coupling, i.e., µ = 0, eq 85 reduces to
the one we obtained in the study of thermoreversible
gels.10–12, 93 To the contrary, when there is no polymer–
polymer coupling, i.e., λ = 0, eq 85 reduces to the rela-
tion we obtained in the study of closed-loop miscibility
gaps of aqueous polymer solutions.33

In the following numerical calculation of the phase
diagrams we use

λ(T ) = λ0 exp(−γ1τ) and µ(T ) = µ0 exp(−γ2τ),

(87)

by splitting the standard free energy changes into the
entropy part and the energy part, where γ1 ≡ |∆ε1|/kBΘ,
∆ε1 (< 0) being the polymer–polymer binding energy,
is the bond strength relative to the thermal energy. The
polymer-water bond γ2 is similarly defined. Effect of
the entropy change on bonding is included in the pref-
actors.

Figures 12 (a)∼(c) show how the sol/gel transition
line comes closer to the miscibility gap and interferes
with phase separation as the polymer–polymer associa-
tion constant is increased.106 Broken lines show sol/gel
transition, solid lines binodals and dotted lines spin-
odals. The parameters γ1 and γ2 are fixed at 3.5, and
λ0 is changed from figure to figure (λ0 = 0.001 in (a),
= 0.01 in (b) and = 0.1 in (c)). Other parameters are
fixed at n = f = 100, µ0 = 0.05, and ψ1 = 1. As
λ0 becomes larger, two miscibility gaps come closer to
each other and the sol/gel line shifts to low concentra-
tion region at intermediate temperatures. It does not,
however, move so much at lower temperatures. This
is caused by the dominance of hydration at low tem-

peratures which prevents polymers from forming a gel.
As the temperature becomes higher, some of the hy-
drating solvent molecules are detached off the chains,
and the chance to form direct bonds becomes higher.
The dominance of hydration at low temperatures thus
results in gelation on heating. The slope of the osmotic
compressibility is discontinuous across the sol/gel tran-
sition line, so that the transition is regarded as the third
order phase transition.

Figure 12 (b) corresponds to what we see in the ex-
periments on cellulose in water (Figure 4 of the ref 85)
The upper half of the miscibility loop is beyond the
range of the experimental observation. The sol/gel line
intersects the binodal from below. The intersection,
though upside down, should be regarded as a tricritical
point (TCP) because it is the point where a continuous-
order sol/gel transition line changes into the first-order
binodal line.61, 62 There is no lower critical solution
point in this diagram. Instead a new tricritical phenom-
ena are expected around the TCP.

Multicomponent Gelation

In biological and medical science, thermoreversible
gels consisting of more than two species of polymers
are very important. For example, it has been suggested
that the repeated sol/gel transition of actin, controlled
by actin-binding protein (ABP), drives motions of indi-
vidual biological cells.107 In this ternary system (actin,
ABP and water), ABP works as a cross-linker of the
actin filaments. In the food industry, biopolymer mix-
tures in which either single or multiple ingredients form
networks have many important applications, and have
been the focus of intensive experimental study.108, 109

For example, Clark et al.108 studied composite aqueous
gels consisting of thermoreversible cold-setting gelling
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components such as agarose and gelatin by electron-
and optical microscopy. They reported that their mi-
crographs appeared quite similar to those observed in
a number of synthetic interpenetrating networks (re-
ferred to as IPNs)110, 111, and showed phase separa-
tion into the two polymer networks with possible phase
inversion at a certain mixture composition. Durrani
et al.112, 113 derived a phase diagram for the ternary
amylopectin-gelatin-D2O mixture in the sol state by the
use of Fourier transformed infrared microspectroscopy.

Formation of mixed networks may also be used to
modify the rheological properties of aqueous poly-
mer solutions. For instance, quite recently it was
experimentally demonstrated 114 that the viscosity of
mixtures of the two species of polymers, poly(N-
isopropylacrylamide) and hydrophobically modified
poly(sodium acrylate) in aqueous solution becomes
several orders of magnitude higher than is achieved
without hydrophobic modification. Possible mecha-
nism of heteropolymer cross-linking between the hy-
drophobes on the different species, followed by net-
work formation by the hydrophobic aggregation of
molecules, was proposed.114

To study thermoreversible mixed gels, we consider
a mixture of A-chains and B-chains, each carrying f -
functional and g-functional groups. When either of the
functionalities exceeds three, a cluster grows to macro-
scopic dimensions as soon as a threshold in the concen-
tration is reached.115 Above this threshold a network
made up of the two components is formed. The strength
of the bonds can be expressed by the three association
constants eq 23. By the relative strength of these con-
stants, let us now classify the types of association into
the following fundamental three categories:

(i) Interpenetrating networks (IPNs) — Polymer
chains A and B are cross-linked within the same
species, but do not form bonds between different
species, i.e., λAB = 0. We refer to this case as
A·A/B·B.

(ii) Alternating networks (ANs) — Cross-links are al-
lowed only between different species, i.e., λAA =

λBB = 0. We refer to this case as A·B. Because
the clusters (of finite or infinite size) formed are
multi-block copolymers, the system may undergo
microphase separation. Hence, macrophase sep-
aration, microphase separation and gelation inter-
fere with each other.

(iii) Randomly mixed networks (RMNs) — If the
strengths of associative forces in the three combi-
nations AA, BB, and AB are all of the same order,
cluster formation progresses randomly. The resul-

tant networks can be regarded as macroscopic ran-
dom block-copolymers.

Networks belonging to category (i) are defined as
a non-bonded, but unseparable, combination of the
two different polymer networks. As a consequence
of a complex dynamic balance between the two oppo-
site tendencies, i.e., association and phase separation,
synthesis of IPNs can produce materials ranging from
molecularly homogeneous to microscopically phase-
separated with phase domains of various sizes, and this
provides a unique method of controlling the morphol-
ogy and mechanical properties. The chemistry and
physics of IPNs have been extensively reviewed.110, 111

There are two main methods of synthesizing them: si-
multaneous IPN (sim-IPN) and sequential IPN (seq-
IPN) formation. In sim-IPN formation, functional
monomers (or primary chains) of both species A and
B are mixed together and polymerized. In seq-IPN,
a polymer network of species A is synthesized, and
functional monomers B are swollen into the network
and polymerized. In the present study we consider
physically cross-linked networks in which junctions are
formed by non-covalent associative forces, and focus
our attention on the sim-IPN. In such a weakly cross-
linked IPN, polymers can reach equilibrium by the re-
organization (creation and annihilation) of the network
junctions in the course of phase separation, and, under
certain conditions, the possibility arises that a molecu-
larly homogeneous phase comprised of two unsepara-
ble (on a time scale shorter than the junction lifetime)
networks will occur.

Mixtures belonging to category (ii) form cotermi-
nously cross-linked networks when one of the compo-
nents is a telechelic polymer carrying functional groups
on both of its ends.12 In the extreme case where this
cross-linker is the solvent molecule itself, these net-
works are physical gels whose junctions are made up
of complexes involving solvent molecules. It was sug-
gested from differential scanning calorimetry data 4, 116

that, atactic polystyrene forms thermoreversible gels in
the solvent carbon disulfide by forming solvent com-
plexes at the network junctions, the sol/gel transition
temperature exhibiting a peak as a function of the poly-
mer concentration.

Associating polymers belonging to category (iii)
form gels consisting of randomly connected two-
component networks coexisting with the independent
one-component pure gel networks. Typical examples
studied so far are gelatin/agarose mixed gels in which
the solution gels in a concentration region below the
gelation concentration of each gelling component.118

Figures 13 (a), (b) show the calculated phase dia-
grams 20 of alternately cross-linked networks in a sym-
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Figure 13. Phase diagrams of a alternately cross-linked network in the symmetric case (Flory’s treatment); nA = nB = 10, f = g = 3,
λ0 = 1.0. Association constants γ is changed with other parameters being fixed: (a) γ = 1.9926, (b) γ = 5.0. The sol/gel transition lines
(thick solid lines), binodal (thin dashed line) and spinodal (thin solid line) are shown. The postgel region is indicated by thin horizontal lines.
The shaded regions indicated by letter U, are unstable regions. The open circles show critical solution points. The gel region lies inside the
spinodal for small values of association constant as in (a), but in the case of strong association as shown in (b), the miscibility gap splits into
two separate pieces, and the gel region is stabilized. The alternating network works as the solvilizer in this case due to their amphiphilic
nature. The critical points stay inside the gel region so that phase separation into two gels with different concentrations, and hence different
cross-link density, is possible.

metric case (nA = nB = 10, f = g = 3, λ0 = 1.0). The
dimensionless binding energy γ between the functional
groups on A-chains and B-chains is different. Thick
solid lines show the sol/gel transition lines, thin dashed
lines binodal, thin solid lines spinodal, and white cir-
cles the critical solution point. The gel region is indi-
cated by the horizontal lines, and the unstable region
(U) is shaded. For small γ, the gel region lies inside
the unstable region, so that a stable homogeneous gel is
not expected. With increase in the association energy,
the gel region grows and miscibility is improved near
the stoichiometric concentration φ = 0.5 (in the sym-
metric case) by the existence of mixed clusters. In Fig-
ure 13 (a), the population of hetero-clusters becomes so
large at low temperatures that a reentrant homogeneous
phase appears, and as a result, a new critical solution
point appears lying on the sol/gel transition line. With
further increase in the association energy, two critical
solution points lying at φ = 0.5 merge into a single one.
Then, the unstable region splits into two separate areas
as is shown in Figure 13 (b).

Gelation Triggared by Polymer Conformational Tran-
sition

Most natural polymers undergo a conformational
transition preceding gelation. Activation of the par-
ticular functional groups on a polymer chain accom-

panied by a proper three dimensional conformation
change is a necessary prerequisite for the interchain
cross-linking. For instance, water-soluble natural poly-
mers such as agarose and κ-carrageenan first change
their conformation from the random coil state to a par-
tially helical state, and then the helical parts aggregate
to form network junctions.1, 4, 5, 119, 120 Recently, a sim-
ilar two-step mechanism of gelation through coil/helix
transition was confirmed for synthetic polymers with
stereo-regularity.121, 122 It was found that, in solutions
of syndiotactic poly(methyl methacrylate) in toluene, a
fast intramolecular conformational change is followed
by an intermolecular association leading eventually to
gelation.

Other important examples are globular proteins. Pro-
teins such as ovalbumin, or human serum albumin, are
believed to form gels after some of the intramolecular
bonds in a native state are broken during denaturation,
with their functional groups being exposed to the outer
space, followed by intermolecular recombination of the
groups.1, 123, 124 A certain degree of unfolding to expose
functional groups is a neccessary condition for the gela-
tion in these examples.

To study these examples systematically, let us here
classify the types of gelation in the following way:

• Intra/Inter Transition The functional groups
hidden inside a polymer molecule are activated
by the change of environmental conditions such
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as the temperature, polymer concentration, pH,
concentration of another component, etc., and
lead to gelation by forming intermolecular bonds.
Since the subchain forming a loop by intramolec-
ular association looks like a petal in a flower,
and the dissociated functional groups form inter-
chain bridges, this transition is often referred to
as Loop/Bridge transition or Flower/Bridge tran-
sition.75 In the case where functional groups are
thermally activated, this type of conformational
transition leads to high-temperature gels.

• Coil/Helix, Coil/Rod or Coil/Globule Transition
Polymers in random coil conformation first par-
tially form helices (or rods, globules) as the tem-
perature is lowered, and then helices (rods, glob-
ules) aggregate into network junctions. This
mechanism results in the low-temperature gelation
as complex cross-linking regions are cooperatively
formed by the attractive interactions. At extremely
low temperatures, however, helix sequences be-
come longer, and, as a result, the total number of
helices on a chain decreases.126 The restriction in
selecting helix sequences from the limited chain
length, thus, tends to prevent gelation.

• Two-State Transition Each monomeric unit A
along a polymer chain can take either an active
state A∗ or an inert state A. The active monomeric
units form cross-links of the type (A∗)k with mul-
tiplicity k (k = 2, 3, 4, . . .). This type may also lead
to high-temperature gelation.

To study such systems we introduce conformational
term

∆Fconf = AλNλ +
∑
j,l

(
∑
f≥1

A f l f )N(j; l) +
∑
f≥1

A f NG
f ,

(88)

into our model free energy,117 where Nλ is the num-
ber of inert molecules (called λ-molecules) that carry
no active functional groups, NG

f the number of primary
molecules in the gel network that carry f active func-
tional groups (called µ-molecules), Aλ the conforma-
tional free energy of a single λ-molecule and A f the
same of an active molecule with f active groups. The
free energy required for the activation of a molecule is
therefore given by

∆A f ≡ A f − Aλ. (89)

The usage of the terms λ and µ comes from equilib-
rium polymerization of sulfur.127, 128 Equilibrium poly-
merization of surfur is a special case of the above in-
tra/inter transition. A ring polymer S8 (called λ-sulfur),
which is inert at room temperature, first opens its ring
into a linear chain carrying reactive groups on both its

ends (called µ-sulfur) as the temperature is raised, and
then polymerized through interchain bonding at 160◦C.
Since the reaction takes place pairwisely and the func-
tionality f (number of active sites on a molecule) of
µ-sulfur is two, molecules form linear chains instead of
three dimensional networks.

First let us consider the activation equilibrium, i.e.,
the equilibrium between λ-molecules and f -molecules
in the µ-state. It is given by the condition

∆µλ = ∆µ(j0 f ; l0 f ). (90)

On substitution of the explicit forms of the chemi-
cal potentials, we find that the volume fraction of f -
molecules in the solution is uniquely related to the vol-
ume fraction of the λ-molecules through the equation

φ(j0 f ; l0 f ) = φλ exp(−β∆A f ). (91)

The excitation probability is given by

η f ≡ e−β∆A f . (92)

For independent excitation, η f = η
f
1 , and η1 is assumed

to take a form η1 = η0 exp(γ′τ) for numerical calcula-
tion.

The relation eq 70 is then rewritten as

λ fav(z)
n
φ = zu(z), (93)

where

fav(z) ≡
∑
f≥0

f u(z) f η f /
∑
f≥0

u(z) f η f , (94)

is the number-average functionality of polymer chains.
Figures 14 (a), (b) show how the phase behavior

changes depending upon the relative strength of the as-
sociation constant and the excitation constant. These
phase diagrams are calculated for trifunctional ( f = 3)
low molecular weight molecules (n = 1) with triple
junctions (s = 3). Independent excitation of the func-
tional groups is assumed. In these diagrams, solid
lines show binodal, broken lines sol/gel transition, and
shaded areas are unstable regions. When the associa-
tion constant is large as in Figure 14 (a), the solution ex-
hibits UCST type phase separation intersecting with the
low-temperature sol/gel transition line at the top of the
phase separation region. With decrease in the strength
of association, or increase in the excitation constant, as-
sociation in the low temperature region becomes less
favorable, and as a result, the lower part of a sol/gel line
tends to shift to higher concentration region. The unsta-
ble region around the sol/gel transition line move up-
wards following the shift of the sol/gel transition line.
In the case of extremely large excitation constant as in
Figure 14 (b), the gel region completely separates from
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Figure 14. Phase diagrams of low molecular weight primary molecules (n = 1) with triple associative groups ( f = 3). Independent
excitation followed by triple association (s = 3) is assumed. Association constant and excitation constant are fixed at (a) λ0 = 0.73, γ =
2.50, η0 = 1.00, γ′ = 2.80; (b) λ0 = 1.48, γ = 2.00, η0 = 1.00, γ′ = 3.00.

the UCST miscibility dome, because strong thermal ex-
citation is required to activate functional groups. Extra
LCST and UCST appear at the top and bottom of the
high-temperature isolated two-phase region. This dia-
gram resembles that of the equilibrium polymerization
of sulfur in a solution,128 but the polymerization line
is replaced by the gelation line. Tobitani and Ross–
Murphy 124 confirmed a similar gelation line in the
study of heat-induced gelation in aqueous solution of
globular protein (bovine serum albumin).

This study is directly applicable to thermoreversible
gelation triggared by coil/helix transition of polymer
chains. Details will be published elsewhere.

Polymer-Surfactant Interaction

The interactions between polymers and surfactants
have been a subject of great interest.129, 130 The prob-
lem was laid initially in studies of proteins associated
with natural lipids, and later in the studies of their as-
sociation with synthetic surfactants. More recently, in-
teraction of water-soluble synthetic polymers such as
poly(ethylene oxide) with ionic and non-ionic surfac-
tants 131–134 have attracted the interest of researchers
because of the scientific and technological implica-
tions. Adding surfactants to polymer solutions with for-
mation of polymer/surfactant complex can substantially
alter the physical properties of the starting polymers.
The effects can be summarized into the following four
categories: (i) Conformational transition of polymers

such as coil/globule transition 135, 136 and coil/rod tran-
sition,137, 138 (ii) Expansion and shift of the phase sep-
aration region on the polymer/solvent phase plane,139

(iii) Formation of composite microphases,140 (iv) Shift
of the sol/gel transition line 141–143 and modification
of the rheological properties.71, 80, 82 When polymers
carry small fractions of hydrophobic groups, effects are
dramatically enhanced, because the ability of surfac-
tant binding is enhanced by the hydrophobic interac-
tion between polymer hydrophobes and surfactant hy-
drophobes. A profound influence of added surfactants
on the rheological properties has been reported. For ex-
ample, the high-frequency plateau modulus of HEUR
solution exhibits a large peak when sodium dodecyl sul-
fate (SDS) is added at low polymer concentrations. The
peak in the modulus disappears at higher polymer con-
centrations.71

To study the effect of added surfactants, we consider
a model mixture of APs and low molecular-weight sur-
factant molecules in a solvent.144 Each polymer is as-
sumed to carry the number f (≥ 2) of associative groups
along its chain, and each surfactant molecule is mod-
eled as a low molecular weight molecule carrying a
single hydrophobe connected to the hydrophilic head.
Therefore, the system is a special case of the model so-
lution treated above.

In equilibrium, hydrophobes on the polymers and on
the surfactants aggregate into mixed micelles that serve
as cross-link junctions. The aggregation number differs
from one micelle to another. If we use the (reduced)
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Figure 15. Polymer concentration at sol/gel transition as a
function of the concentration of added surfactant. The concen-
tration is measured in terms of the number density fφ/n of the
hydrophobes times the association constant λ(T ) for each species.
Minimum multiplicity smin is varied from curve to curve under a
fixed maximum multiplicity smax. While the sol/gel concentration
monotonically increases with surfactant concentration for smin = 2
(i.e., there is no lower bound in the multiplicity), there appears a
minimum at a certain surfactant concentration for smin ≥ 3 (i.e.,
if there is a gap below the minimum allowed multiplicity). In the
latter case, gelation is promoted by the surfactant molecules, and
referred to as surfactant-mediated gelation (SMG) in the text.

concentration c f ≡ λ(T ) fφ f /nf instead of φ f for poly-
mers and c1 ≡ λ(T )φ1/n1 for surfactants (ni being the
number of elementary statistical units on the molecule
of species i), the relation eq 70 can be transformed into

c f + c1 = zu(z). (95)

Solving this relation with respect to z for a given c f and
c1, we find z, and hence the conversion α as a func-
tion of a given temperature and concentrations of both
components.

The sol/gel transition condition for our poly-
mer/surfactant system is then explicitly given by

( f − 1)c f zu′(z)/(cf + c1)u(z) = 1. (96)

Combining this condition with the above relation and
eliminating the parameter z, we find the sol/gel transi-
tion curve on the temperature-concentration plane.

When polymer concentration is low and the num-
ber of hydrophobes is not enough to form junctions,
addition of surfactants combines the unassociated hy-
drophobes into forming stable junctions with aggre-
gation number exceeding smin. In this situation, the
surfactant works as a cross-linking agency. On the
contrary, when the polymer concentration is large and
many junctions are already formed, some of the poly-
mer hydrophobes in the junctions are replaced by

surfactant hydrophobes as soon as their multiplicity
reaches smax, leading to dissociation of network junc-
tions.

To demonstrate these opposite effects, we calcu-
late the concentration of polymers at the sol/gel tran-
sition point as a function of the concentration of the
added surfactant.144 Figure 15 shows the result for the
telechelic ( f = 2) polymers. Both polymer and sur-
factant concentrations are expressed in terms of the re-
duced concentration, the number of hydrophobes (per
lattice cell) times association constant. To see the ef-
fect of the minimum multiplicity, smin is varied from
curve to curve, while the maximum multiplicity is fixed
at smax = 8. It is clear that the sol/gel concentration c∗f
monotonically increases with the surfactant concentra-
tion for smin = 2 (no lower bound), i.e., gelation is sim-
ply blocked by the surfactant. But if there is a forbid-
den region between k = 1 (unassociated) and k = smin,
a minimum in c∗f starts to appear. At this surfactant
concentration gelation is most promoted as can be seen
for smin ≥ 3. The surfactant concentration at which
c∗f becomes minimum is referred to as the surfactant-
mediated gelation (SMG) point. It increases as the min-
imum multiplicity becomes larger.

We next study the effect of added surfactants on the
dynamic mechanical moduli of AP solution. In the
experiment of HEUR/SDS system,71 addition of sur-
factant results in several effects. The moduli can no
longer be described by the simple Maxwell element
with a single relaxation time, but a shoulder appears
on the loss modulus at high frequencies. The high
frequency plateau in the storage modulus reveals non-
monotonic dependence on the SDS concentration.71, 82

At low polymer concentration, it initially rises to a peak
and then decreases monotonically, falling eventually to
zero at higher SDS concentration. With increase in
the polymer concentration, the height of the peak in
the storage modulus decreases and its position shifts
to lower SDS concentration. Above a certain polymer
concentration, the peak disappears.

The plateau value of G′(ω) is expected to be pro-
portional to νeff(c1)kBT because the network topology
does not alter within the measurement timescale ω−1,
which is shorter than the average lifetime τ× of a junc-
tion. Therefore, we can study the elastic moduli by
counting the number of elastically effective chains as
a function of the concentration of surfactant. Figure 16
shows the number νeff(c1) plotted against the surfactant
concentration c1 (divided by the polymer concentration
c) for f = 2. The number is normalized by the value
νeff(0) under the absence of the surfactant. This ratio
gives the relative amplitude G′(c1)/G′(0) of the high
frequency plateau value in the storage modulus. The
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Figure 16. The number of elastically effective chains plotted
against the ratio of the surfactant concentration and the polymer
concentration. The polymer concentration is varied from curve to
curve. At low polymer concentrations, the number of effective
chains, and hence the high frequency modulus, shows a peak at
SMG surfactant concentration and then decreases. But at higher
polymer concentration, it monotonically decreases. The effective
chains disappear at a high surfactant concentration at which solu-
tion turns into sol. Note that all curves cross at a single point.

multiplicity of a junction is varied from 3 to 8. The
polymer concentration c f=2 is changed from curve to
curve. As expected, the curves of the number of elas-
tically effective chains for low polymer concentrations
first rise to a peak and then monotonically decrease to
zero where the gel network is broken into sol by the
surfactant. For higher polymer concentrations, how-
ever, the curves do not show any peak, because junc-
tions are well developed without surfactant molecules
for such polymer concentrations and the added surfac-
tant merely destroys junctions. These calculations re-
produce, at least qualitatively, the experimental data on
such as HEUR/SDS reported by Annable et al.71

THEORY OF TRANSIENT NETWORKS

In this section we concern dynamic properties of
the thermoreversible networks to study enhanced vis-
coelasticity due to the presence of the temporal junc-
tions that are created and destroyed under thermal fluc-
tuation and/or external stress.

The first systematic study on thermoreversible net-
works was the transient network theory developed by
Green and Tobolsky 145 in which stress relaxation in
rubber-like polymer networks was treated by the kinetic
theory of rubber elasticity suitably extended so as to al-
low for the creation and annihilation of junctions dur-
ing the network deformation. In order to ensure wider

range of applicability, some arbitrary assumptions in
their theory were later removed by Lodge 146 and Ya-
mamoto 147 with the intention to apply it to the entan-
gled melts 148, 149 (rather than the reversible networks).
In their studies, to describe the observed viscoelas-
tic properties of ordinary polymer melts, localized en-
tanglements were regarded as the temporal junctions
which can be created and destroyed during the macro-
scopic deformation. Because of the lack of the de-
tailed knowledge about molecular mechanism of junc-
tion generation (onset of entanglements), their theories,
however, remain semiphenomenological.

Here, we propose a new type of transient network
theory 150, 151 to ensure a molecular picture which is
suitable to describe real networks in which crosslinks
are actually generated and destroyed. We find a spe-
cific form of the junction generation function, which
is dependent on the number of active chains present at
the moment of linkage—and hence dependent on the
macrodeformation at the same moment.

Three Fundamental Timescales

Multiple junctions formed by weak associative in-
teraction can break and recombine with a finite aver-
age lifetime τ×. To describe creation and annihilation
we introduce 150 a model network made up of poly-
mers of uniform molecular weight M (or the number
n of statistical units) carrying associative functional
groups at their both chain ends (telechelic polymer).
We focus our attention specifically on the unentan-
gled regime where M is smaller than the entanglement
molecular weight Me, so that each chain obeys Rouse
dynamics 148, 149 modified by mutual end-association.
For the entangled regime where τ× is comparable to
the entanglement release time, phenomenological the-
ory to study observed two-step stress relaxation was
proposed.152

In the following, we assume the lifetime of a junction
is sufficiently long so that it is well separated from the
Rouse relaxation spectrum, the longest time of which
is given by τR ≡ ζa2n2/3π2kBT , where ζ is the friction
coefficient of a monomer with the size a.

We consider a time interval dt smaller than τ× but
still larger than τR. Under a macroscopic deformation
λ̂(t) given to the network, either end of a chain, being
stretched above a critical length, disengages from the
junction and the chain relaxes to a Gaussian conforma-
tion, whilst some of the free dangling ends recapture
the junctions in their neighborhood (Figure 17). Since
the stress is transmitted only through the chains whose
both ends are connected to the network junctions, we
call these chains elastically effective (or active) chains
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Figure 17. Chain disengagement and recombination in the
transient network under a macroscopic deformation. The network
is made up of telechelic polymers with associative groups at their
chain ends.

as in the preceding sections.

Transient Network Model

Let N be the total number of polymer chains in a unit
volume, and let F(r, t)dr be the number of active chains
at time t whose end-to-end vector r falls on a small re-
gion dr around r. The total number of active chains
at time t is given by ν(t) ≡ ∫

F(r, t)dr. By counting
the number of active chains that are destroyed and cre-
ated in the interval dt under the deformation λ̂(t), it is
shown 150, 151 that the time development of the distribu-
tion is governed by the equation

F(r, t)dr = Θ(r, t; r0, 0)F(r0, 0)dr0

+p
∫ t

0
dt′Θ(r, t; r′, t′)[N − ν(t′)] f0(r′)dr′, (97)

where

Θ(r, t; r′, t′) ≡ exp[−
∫ t

t′
β(rt′′ ,t′)dt′′], (98)

is the probability for an active chain created at a certain
time t′ in the past to remain active until the present time
t. The function β(r) gives the probability per unit time
for an active chain to disengage from the junction and
is called chain breakage rate. The parameter p in the
second term is the probability per unit time for a dan-
gling end to capture a junction (called chain recombi-
nation rate). We have assumed that end-to-end vectors
are mapped affinely to the macroscopic deformation so
that we have rt′′ ,t′ = λ̂(t′′) · λ̂(t′)−1 · r′. etc. The equi-
librium distribution f0(r) of the end-to-end vector is as-
sumed to take the conventional Gaussian form with the
average square distance 〈r2〉0 = na2.

Upon integration over r, the total number ν(t) per unit
volume of the active chains is found to obey an integral
equation

ν(t) = νin(t) + p
∫ t

0
ζ(t; t′)[N − ν(t′)]dt′, (99)

where the function ζ(t; t′) defined by

ζ(t; t′) ≡ 〈exp[−
∫ t

t′
β(rt′ ,t′′)dt′′]〉0 (100)

in terms of the chain breakage rate β(r) gives the aver-
age probability for an active chain created at time t′ to
remain active until time t, and is named chain survival
function. The symbol 〈. . .〉0 indicates an average over
Gaussian distribution.

The stress tensor corresponding to a given deforma-
tion λ̂(t) is readily derived from the total free energy
Φ(t) ≡ ∫

drφ(r)F(r, t) where

φ(r) =
3kBT

2na2
r2 (101)

is the free energy stored in an effective chain with end-
to-end distance r. Substituting the integral form for
F(r, t) and taking the derivative by λ̂(t), we find

Σ̂(t) = Σ̂in(t) + p
∫ t

0
σ̂(t; t′)[N − ν(t′)]dt′ − P1̂,

(102)

for the time development of the stress tensor, where

Σ̂in ≡
∫ (
φ′(r)

r

)
rTrΘ(r, t; r0, 0)F(r0, 0)dr0 (103)

is the stress sustained by the initially active chains, and

σ̂(t; t′) ≡
∫ (
φ′(r)

r

)
rTrΘ(r, t; r′, t′) f0(r′)dr′ (104)

is the time propagator for the stress survival. Here, the
symbol Tr shows the transposed vector of r. The last
term of eq 102 gives the isotropic pressure.

Chain Breakage Rate
Let us next consider a realistic form of β(r). We fo-

cus our attention on a single active chain. One end re-
active group dissociates from the junction either by its
own thermal motion or by being pulled by the tension
exerted from the chain connected to it. If the reactive
group is isolated–that is, has no chain connected to it–,
it must overcome the potential barrier W to dissociate.
The probability for this process to occur is proportional
to exp(−W/kBT ), and hence the dissociation rate per
unit time takes the form

β0 = ω0e−W/kBT , (105)

where ω0 is the natural frequency of thermal vibration
of the reactive group in the isolated state, or equiva-
lently, the average number of times it tries to climb up
the potential barrier by thermal motion. This frequency
is a microscopic measure of the time and should take
a typical value on the order of 108–109 s−1 in ordinary
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circumstances. As the reactive group is attached on the
chain end, however, it is under the influence of the ad-
ditional force transmitted along the chain. This force fr
works in the direction of the other end of the chain. Its
absolute value is given by

fr =
∂φ

∂r
=

3kBT

na2
r, (106)

for a Gaussian chain, where φ(r) is the free energy
stored in the chain. Being pulled by this force, the po-
tential barrier for A to dissociate is effectively reduced
to W− fr ·a, so that the probability of the chain breakage
per unit time is enhanced to the value

β(r) = ω0 exp[−(W − fra)/kBT ] ≡ β0eκr, (107)

where β0 is given by eq 105 as before and κ ≡ 3/na
is a small parameter which depends on the molecular
weight of the polymer chain, and τ× = β0

−1 is the re-
laxation time τ× given above. This form reflects the
activation process: the relaxation time depends expo-
nentially on the temperature. Temperature dependence
of the dominant time scale is one of the most important
differences between temporalily crosslinked networks
and uncrosslinked polymer melts.148, 149 (In the latter
systems, both Rouse relaxation time and the reptation
time are virtually proportional to T−1 apart from the in-
direct dependence through the friction coefficient).

Equilibrium Distribution
In the following we consider an aged system–that is,

a network which is kept quiescent with no external per-
turbation for a sufficiently long time, so that it remains
intact in an equilibrium state. Since ∂F/∂t = 0, eq 97
gives a balance

p(N − ν0) f0(r) = β(r)F(r, 0) (108)

for the initial distribution, where ν0 ≡
∫

F(r, 0)dr is
the number of active chain in the initial equilibrium.
This balancing condition requires that F(r, 0) must be
proportional to f0(r)/β(r). Correct normalization gives
F(r, 0) = ν0 f (r, 0), where

f (r, 0) ≡ f0(r)
ζ0β(r)

, (109)

with

ζ0 ≡
∫

f0(r)
β(r)

dr, (110)

being the normalization constant. The initial distribu-
tion is therefore not Gaussian if the chain breakage rate
β depends on the end-to-end distance. Substituting this
form for f into eq 108, we find

ν0 =
pζ0

1 + pζ0
N. (111)

Among the total N of the chains forming the network,
the fraction pζ0/(1 + pζ0) turns out to be active.

Figure 18. Comparison between stationary nonlinear viscos-
ity(broken lines) and linear frequency-dependent viscosity (solid
lines). Cox–Merz rule does not hold at high shear rate.

RHEOLOGICAL PROPERTIES OF
THERMOREVERSIBLE NETWORKS

Stationary Non-Linear Viscosity and Shear Thickening

Let us first study stationary solution of the fundamen-
tal equation under shear flow with the shear rate γ̇. The
deformation tensor λ̂(t) takes the form

λ̂(t) =


1 γ̇t 0
0 1 0
0 0 1

 . (112)

When the chain breakage rate is independent of r and
given by β(r) = β0, the network has a single relax-
ation time τ× = β0

−1 representing the average bound
time of a hydrophobe. This simplest model for β(r)
was first considered by Green and Tobolsky,145 so that
in the following we shall refer to it as Green-Tobolsky
limit (or GT limit). Although it is physically unrealis-
tic, a great deal can be inferred from such an extreme
case concerning the viscoelastic properties of the tran-
sient network. The steady state number of active chains
is independent of the deformation rate. It remains the
same as the equilibrium value under no external forces.
The shear viscosity becomes η(γ̇) = ν0kBT/β0 = G0τ×,
where G0 ≡ ν0kBT is the linear elastic modulus of an
affine network. Here, ν0 ≡ pN/(p + β0) is the number
of active chains in an equilibrium state. There is neither
shear thinning nor shear thickening in the GT limit.

In Figure 18, we compare theoretically calcu-
lated stationary nonlinear viscosity η(γ̇) with linear
frequency-dependent viscosity η(ω) (discussed in the
following sections) for the chain breakage rate eq 107.
In usual polymer solutions, these two agree (so called
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Cox–Merz rule), but for thermoreversible transient net-
works they separate at high shear rates, thus indicating
brealdown of Cox–Merz rule. Our simple transient net-
work model, however, does not lead to shear thicken-
ing.

Linear Response and Dynamic Mechanical Modulus

In order to derive the dynamic mechanical moduli,
let us consider a small oscillatory deformation given by
the deformation tensor λ̂(t) = 1+ ε̂ sinωt. For example,
the small tensor ε̂ is given by

ε̂ =


0 ε 0
0 0 0
0 0 0

 (113)

for a shear deformation. The end-to-end distance at
time t′′ is then expanded as

|λ̂(t′′) · λ̂(t′)r| = r + h(r)(sinωt′′ − sinωt′) + O(ε2),

(114)

where the function h(r) of order ε is defined by h(r) ≡
(Tr · ε̂ · r)/r.

Substituting this series expansion into eq 102 and ex-
panding the result again in powers of ε, we find

Σxy(t) = εkBTν0[g1(ω) sinωt + g2(ω) cosωt] + · · · ,
(115)

where new functions gi(ω) are explicitly given by

g1(ω)≡ 1
ζ0〈r2〉0〈

ω2r2

β(r)[ω2 + β(r)2]
[1− 2rβ(r)β′(r)

5[ω2 + β(r)2]
]〉0,

(116)

g2(ω)≡ 1

ζ0〈r2〉0 〈
ωr2

ω2 + β(r)2
[1 +

[ω2 − β(r)2]rβ′(r)

5β(r)2[ω2 + β(r)2]
]〉0.

(117)

On the basis of this fundamental equation, we find
that the storage modulus G′(ω, T ) and the loss modulus
G′′(ω, T ) for shear deformation of the network is given
by

G′(ω, T ) = νe(T )kBTg1(ω, T ), (118)

G′′(ω, T ) = νe(T )kBTg2(ω, T ), (119)

where νe(T ) is the number of elastically effective chains
in the network at temperature T .

In the GT limit, our model gives conventional
Maxwell fluid with a single relaxation time.

Upon substitution of eq 107 into the moduli, we find
that a modulus-frequency curve at any temperature T
can be superimposed onto a single master curve at the
reference temperature T0 by proper horizontal and ver-
tical shift. Specifically we have

G(ω)
νe(T0)kBT0

bT = g(
ω

β0(T0)
aT) (120)

for both G′ and G′′, where

aT ≡ β0(T0)/β(T ) = exp[−W
kB

(
1

T0
− 1

T
)] (121)

is the frequency (horizontal) shift factor (W being the
energy part in ∆F), and

bT ≡ νe(T0)kBT0/νe(T )kBT (122)

is the mudulus (vertical) shift factor. From aT, or the
peak position of the loss modulus, we find the free en-
ergy barrier W of activation, and from bT or the high
frequency plateau value of the storage modulus, we find
the number νe of elastically effective chains.

Transient Flows

In this section, we study time-dependent rheological
properties for the defomation λ̂(t) that varies with time.
In some experiments, a uniform deformation is given to
the sample at certain time and kept at a constant value.
The stress suddenly rises, but soon decay to the ini-
tial equilibrium level. In more detailed experiments, a
shear flow with a constant shear rate is suddenly started.
The stress gradually increases and reaches a maximum
value, and then decays to the stationary value. In both
cases, in more elaborate experiments, another deforma-
tion or flow is given before the sample reaches equilib-
rium. Internal reorganization of chains in the network
can be studied by such transient experiments.

Stress Relaxation

Let us first study time evolution of the stress after
a sudden deformation is given to an equilibrium net-
work. The deformation, being followed by constant
strain λ̂(t) = λ̂θ(t), creates a stress which gradually re-
laxes with time. Long time behavior of stress relaxation
following a large stepwise deformation is frequently
measured in rheological experiments and known as the
nonlinear stress relaxation.

It turns out that the nonlinear stress relaxation func-
tion Σxy(t, λ̂) is not factorized into the product of a func-
tion of the time and a function of the deformation ten-
sor, thus time-strain separability loses its physical back-
ground.

Stress Overshoot

In another important transient experiment, the
rheometer is started from time t = 0 at a constant
shear rate γ̇ (or other deformation rate such as elonga-
tional rate ε̇), and the time dependent shear and normal
stresses (or elongational stress) are measured. At high
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Figure 19. Viscoelastic master curve of HEUR with molecular
weight 35K and 16 Carbons in the end chain. The reference temper-
ature is 5◦C. From the horizontal shift factor, the activation energy
is found to be 67 kJ mol−1. From the high frequency plateau of the
storage modulus, the number of elastically effective chains is found
as a function of the polymer concentration.

shear rate, the stress exhibits a maximum in a certain
transient region before reaching the stationary value.
Such stress overshoot phenomena are commonly ob-
served in polymer solutions and melts. Two important
parameters are usually introduced for the characteriza-
tion of the overshoot phenomena: the time t∗ at which
the stress reaches the peak value (or equivalently, the
amount of strain γ∗ = γ̇t∗ at this time), and the peak
value of the stress Σ(t∗) relative to its stationary value
Σ(t∗)/Σ(∞). We now consider the time evolution of our
transient network after a sudden steady flow is started.

In order to find the stress components, we must first
solve the eq 99 for the number of active chains. Upon
substitution of the solution into eq 102, time develop-
ment of the stress tensor is found.

Let us first examine the GT limit. In this special
case, we immediately find νin(t) = ν0e−β0t again as in
the nonlinear stress relaxation, but we have ν(t) = ν0.
The total number of active chains stays constant in this
limit even if a steady flow is started. It is easy to see
that stresses are steadily increasing functions and ex-
hibit no overshoot no matter how large the shear rate
γ̇ may become. In other words, if the chain break-
age (end disengagement of a chain from a junction in
our present model) takes place at a constant rate irre-
spective of the chain end-to-end distance, there should
be no overshoot. The coupling between the two, i.e.,
the higher probability of breakage for more stretched
chains, brings the stress overshoot. To see this in more
detail, let us consider the quadratic breakage rate for
which analytic solution can be found.

Figure 20 shows three components of the stress ten-

Figure 20. The stress overshoot of the transient network model
under shear flow. The total number of active chains, the shear stress,
the first- and second normal stress difference are shown as functions
of time after a shear flow with the shear rate γ̇ = 1 is started. The
decay rate is fixed as β0 = 1. Each component of the stress shows
an overshoot at different time.

sor, together with the number of active chains, plot-
ted against time. We assumed β(r) = β0 + β1r2/2.
The unit of the time is chosen as β1

−1. The breakage
rate β0 and the probability p of the end association are
fixed as β0 = 1 and p = 0.5 relative to the value of
β1. The stationary value of the active chains is given
by ν0/n = 0.19493 in this case. It is evident that all
stresses of our concern exhibit overshoot around the
time at which the number of active chains decreases ap-
preciably. The overshoot time differs for three stresses;
the shear stress first shows its peak at t∗xy, followed by a
peak of the first normal stress difference at t∗1, and then
by the absolute value of the second normal stress dif-
ference at t∗2. Notice that there is a large overshoot ratio
of the shear stress.

CONCLUSIONS

We have presented an outline of our recent theo-
retical studies on molecular association and thermore-
versible gelation in polymer solutions. Thermody-
namic nature of the sol/gel transition, interference with
phase separation, structure of the network junctions,
path connectivity in the network have been studied
on the basis of the multiple tree statistics combined
with classical lattice-theoretical polymer solutions. Our
studies have mainly focused on the gelation of water-
soluble associating polymers driven by hydrophobic
aggregation, but find many application to experimen-
tal data on other types of gels such as those driven by
hydrogen bonding, micro-crystallization etc.

An attempt has also been made to find the lin-
ear and non-linear viscoelastic properties of reversibly
cross-linked networks with a finite junction dissoci-
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ation time. The theoretical model proposed in this
study approaches two extreme limits of the covalently
crosslinked network and the uncrosslinked melt. The
activation barrier for a chain dissociation and the num-
ber of elastically effective chains in the network are
theoretically estimated and compared with the exper-
iments. Transient flow properties such as stress re-
laxation and stress overshoot are derived. This study
provides a possible pathway to modelling new types
of transient networks such as hydrogen-bonded liquid-
crystalline networks.
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