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ABSTRACT: The structure factor S(k) and the correlation length for semiflexible polymer 
solutions were formulated using the generalized Ornstein-Zernike (GOZ) integral equation for the 

monomer-units pair correlation functions. The derived expression for S(k) contained the Fourier 
transform C(k) of the direct correlation function C(r) involved in the GOZ equation. Taking 

advantage of the short range nature of C(r), we calculated C(k) from the scaled particle theory, 
which was previously shown to successfully describe thermodynamic quantities of semiflexible 

polymer solutions. The present theoretical approach gave S(k) and, which were favorably compared 
with the previously obtained experimental results for dilute through semidilute solutions of a 

semiflexible polymer poly(n-hexyl isocyanate) dissolved in a good solvent dichrolomethane. 
KEY WORDS Light Scattering/ Semiflexible Polymer/ Semidilute Solution 

/ Structure Factor / Correlation Length / Generalized Ornstein-Zernike 
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The spatial distribution of monomer-units 
(or segments) in polymer solutions is not 
completely random but has some regularity. 
Owing to the chain connectivity, this regularity 
ranges over a long distance in comparison with 
that in low-molar-mass liquids. Light scattering 
technique provides us with important infor­
mation about the regularity in the monomer­
unit distribution in polymer solutions. For 
example, the range of regularity usually 
expressed in terms of the correlation length 
can be measured by light scattering. 

In Part 1 of this series, 1 we made a light 
scattering study on semidilute solutions of a 
semiflexible polymer, poly(n-hexyl isocyanate) 
(PHIC), dissolved in a good solvent, dichloro­
methane (DCM), and found that as well as 
the osmotic compressibility (ac/aII) obtained 
for these solutions exhibit polymer concentra­
tion dependences different from those of 
flexible polymer-good solvent systems. We 
succeeded in explaining the concentration 
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dependence of (ac;an) for PHIC solutions 
using the scaled particle theory for wormlike 
spherocylinders with a weak attractive inter­
action. On the other hand, the same theory 
cannot be used for the explanation of~. which 
is not a thermodynamic quantity. In Part 1, we 
did not give any theoretical interpretation of 
this spatial property for the semiflexible poly­
mer solution. 

In the present study, we apply the generalized 
Ornstein-Zernike (GOZ) integral equation for 
the reference interaction site model (RISM) to 
calculate the structure factor S(k) and of 
semiflexible polymer solutions. The GOZ inte­
gral equation approach or the RISM theory is 
a standard method to deal with the structure 
of low-molar-mass liquids. 2 · 3 This equation 
however includes an unknown function, the 
(average) site-site direct correlation function 
C(r). There are different procedures to deter­
mine this function. In this study, we propose 
to determine the Fourier transform of C(r) 
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using the scaled particle theory for wormlike 
spherocylinders including a weak attractive 
interaction, which was used in Part 1 to explain 
the concentration dependence of (oc/oII) of 
PHIC solutions. This procedure enables us to 
explain both (oc/oII) and , (and also S(k)) on 
the basis of the same molecular model. 

Recently Honnell, Curro, and Schweizer4 

applied the GOZ integral equation to calculate 
a short-range radial distribution function of 
monomer units in semiflexible polymer melts. 
They determined C(r) by solving numerically 
nonlinear simultaneous equations constructed 
with the Percus-Yevick closure relation for 
hard particles, 2 •3 which is a different procedure 
from ours proposed in this study. While their 
procedure is suitable to calculate a short-range 
distribution function in a melt or a very con­
centrated solution of polymers without any at­
tractive interaction, our procedure is relevant 
to the treatment of a long-range regularity in 
semidilute or moderately concentrated polymer 
solutions where polymer molecules interact 
each other with both hard-core repulsion and 
soft attraction. Furthermore, our procedure 
does not need an involved numerical analysis 
in distinction from Honnell et al.'s. 

In this paper, we first explain the GOZ 
equation basic to our theoretical development 
and derive the expressions for S(k) and r The 
difference between the present and other light 
scattering theories are explained in the sub­
sequent section. Finally the results of S(k) 
and , calculated by the present theory are 
compared with the experimental light scat­
tering data for the PHIC-DCM system re­
ported in Part 1. 1 

LIGHT SCATTERING THEORY 

Generalized Ornstein-Zernike Integral Equa­
tion 
Let us consider a solution consisting of n 

monodisperse polymer molecules with the 
degree of polymerization N 0 • The distribution 
of monomer units in this solution is specified 
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by the following distribution functions: (1) 
N 0(N0 - l)/2 kinds of intramolecular distri­
bution functions w(r; i1,j1) defined as the 
probability density of finding the monomer 
units i1 and }1 on one chain 1 separated by a 
distance r and (2) N0(N0 +2)/8 kinds of 
intermolecular radial distribution functions 
g(r; i1 , i2 ) defined as the probability density of 
finding the monomer units i1 and i2 on two 
different chains 1 and 2 separated by a dis­
tance r. [If N 0 is odd, the number of the dif­
ferent kinds of g(r; i 1 , i 2) is (N0 + 1 )(N0 + 3)/8.] 
In the following discussion, however, the 
total correlation function h(r; i1 , i2 ) defined by 
g(r; i 1 , i2)-1 will be used instead of g(r; i 1 , i2 ); 

h(r; i 1 , i2 ) approaches zero as r--+ oo. 
According to Chandler and Andersen 5 who 

dealt with the structure of polyatomic molec­
ular liquids using the reference interaction site 
model, we utilize the following generalized 
Ornstein-Zernike (GOZ) integral equation for 
the above polymer solution: 

h(r)= J dr' f dr"w(I r-r' l)C(I r'-r" I) 

x [w(r") + c'h(r")] (1) 

where c' is the number concentration of the 
polymer and h(r) and w(r) the N 0 x N 0 matrices 
whose elements are, respectively, the total 
correlation function h(r; i1, i2) and the intra­
molecular distribution function w(r; i1,j1) for 
each pair of monomer units. The elements 
C(r; i1 , i2 ) of the another N 0 x N 0 matrix C(r) 
in eq 1 are referred to as the direct correlation 
functions for the monomers i1 and i2 on the 
different polymers 1 and 2, and they are 
assumed to be short-range functions which take 
non-zero values only within a range of r 

comparable to the monomer size a. The GOZ 
equation was first applied to polymer systems 
by Schweizer et al.4 •6 - 8 

Iterative substitutions of eq 1 into h(r") on 
the right-hand side of eq 1 produce an infinite 
senes 
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h(r) = f dr' f dr"w(I r-r' l)C(I r' -r" l)w(r") 

+ c' f dr' f dr" Jdr"' Jdr"" 

x w(I r-r' l)C(I r' -r" l)w(I r" -r"' I) 

x C(I r"' - r"" l)w(r"") + · · · · (2) 

On the right-hand side of this equation, the 
first and second terms give the contributions 
of two-chain and three-chain interactions to 
the total correlation functions, respectively, 
and the remaining terms contain more than 
three chain contributions. The first and sec-

+ 

ond terms can be expressed by the diagrams 
depicted in Figure la, where the direct inter­
action between particular two monomers is 
represented by the dashed segment which cor­
responds to the direct correlation function 
C(r; i1, i2 ). Therefore eq 1 takes into account 
interactions among any number of polymer 
chains in the solution which affect the total 
correlation functions h(r; i1 , i2 ) in h(r). 

However we should notice that eq 1 ( or eq 2) 
does not contain the contributions from the 
following diagrams: (1) the diagrams with the 
intramolecular interactions within one chain 
(cf, Figure 1 b) and (2) the diagrams with the 
simultaneous multiple contacts between a pair 

['" 

+ Higher Order Terms 

First Term Second Term 

(a) 

386 

A 
( b) (c) 

Figure 1. Diagrammatic expression of the interactions contributing to the structure factor: (a) the 

interactions considered in the generalized Ornstein-Zernike equation (eq l); (b) the intramolecular 

interaction; (c) the simultaneous multiple contacts between pair of chains; the diagrams of (b) and (c) are 

not included in eq 1. 
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of different chains within the interacting cluster 
(cf, Figure le). Although it is known that, in 
a good solvent, these diagrams significantly 
affect h(r; i1, i2) and w(r; i1, j 1) for flexible 
polymers, we can expect that they are much 
less important for stiff-chain polymers. The 
monomer density inside one stiff-polymer chain 
should be low due to its extended conforma­
tion, and this low density lowers the probabi­
lities of both intramolecular interaction and the 
multiple contacts between a pair of different 
chains. In fact, we know that the intramolecular 
interaction ( or the intramolecular excluded 
volume effect) little affects the conformation or 
w(r; i1 ,j1) of stiff-chain polymers even in a 
good solvent, if the chain is sufficiently stiff and 
the degree of polymerization N O is not very 
large. 1 •9 In the following discussion, we neglect 
the contributions of the diagrams shown in 
Figure 1 b and c, and utilize the GOZ equation 
(eq 1) for semidilute solutions of stiff-chain 
polymers. 

Structure Factor 
Equation 1 can be rewritten in the Fourier 

space using the convolution theorem as 

h(k) = w(k)C(k)[w(k) + c'h(k)] (3) 

calculated from the single chain statistics, h(k) 
must be determined from eq 3, where the 
2xN0(N0 +2)/8 [or 2x(N0 +l)(N0 +3)/8 for 
odd N 0 ] elements of h(k) and C(k) are 
unknown functions. Although Lowden and 
Chandlar10·11 determined h(k) for small poly­
atomic molecules (like benzene, carbon tetra­
chloride, etc.) from eq 3 using Percus-Yevick's 
closure relation for the direct correlation 
functions, this procedure is actually intractable 
for high polymers with large N 0 due to the 
mathematical complexity of the matrix integral 
eq 3. 

However when N 0 is sufficiently large, the 
mathematical difficulty may be avoided by 
using the following approximation. The func­
tions C(k; i1,i2 ) are expected to be essentially 
independent of i1 and i2 when the monomers 
i1 and i2 are not near the chain ends. Now if 
we approximate all the elements C(k; i1,i2 ) by 
the function C(k) averaged over all the 
monomers, i.e., 

No 

C(k)=No 2 I C(k;i1,i2) (5) 
i1,i2 = 1 

eq 3 gives 

h(k) = w(k)C(k)[w(k) + cbh(k)] (6) 

where h(k), w(k), and C(k) are the Fourier where 
transforms of the matrices h(r), w(r), and C(r), 
respectively. The structure factor S(k) is the 

No 

w(k)=No 1 L w(k;i1,.i1), (7) 
Fourier transform of the sum of the all 
(intra- and intermolecular) correlation func-
tions, which can be written in terms of the 
elements of h(k) and w(k), i.e., 

S(k)=-2--[_ I w(k;i1,.i1) 
N 0 ,,.,,=1 

(4) 

where the argument k has the meaning of the 
absolute value of the scattering vector. There­
fore, in order to formulate S(k), we need 
the expressions of the elements of h(k) and 
w(k). While the elements of w(k) can be 
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i1,ii=l 

No 

h(k)=No 2 I h(k; i1, i2), (s) 
i1,i2= 1 

and c~ the number concentration of the 
monomer unit in the solution ( = N 0c'); w(k) is 
the single chain structure factor. Equation 6 is 
identical with the Fourier transform of the 
original Ornstein-Zernike integral equation 
for monoatomic molecular liquids. 2 Curro and 
Schweizer8 showed that the consideration of 
the end-effect on C(k) in a perturbative way 
gives a correction term of order of N 0 - 2 to 
h(k), which should be small for polymers with 
high N 0 . 
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Equation 6 is solved for h(k) to give 

h(k) = w2(k)C(k) 

I - c~w(k)C(k) 
(9) 

and, from eq 4, the structure factor S(k) is 
expressed by 

S(k)- w(k) 
1- c~w(k)C(k) 

(10) 

Therefore we need the two functions w(k) and 
C(k) to calculate S(k). 

For the reason mentioned in the previous 
section, the intramolecular interactions depi­
cted in Figure 1 b can be neglected for stiff-chain 
polymers. Therefore the screening effect on the 
intramolecular excluded volume is not expected 
to exist for these polymers, and the single-chain 
structure factor w(k) may be assumed to be 
independent of the polymer concentration. 
Using the wormlike chain model, several 
authors calculated w(k) at infinite dilution 
[w(k) is equal to the intramolecular inter­
ference factor P(k) multiplied by N 0]. In Part 
1,1 we demonstrated that P(k) for PHIC in 
DCM at infinite dilution was very nicely fitted 
by the theoretical results of Y oshizaki and 
Yamakawa12 for the unperturbed wormlike 
chain model. Therefore we use the same theory 
for w(k) in eq 10. We must also add that in a 
large k region Yoshizaki-Yamakawa's theo­
retical results are more accurate than Koyama's 
expression 13 for w(k) which Honnell, Curro, 
and Schweizer4 used in their calculation of S(k) 

for semiflexible polymer melts from the GOZ 
integral equation. 

Expression for C(k) 
In order to obtain C(k), we adopt the 

following procedure. We are interested in the 
light scattering structure factor in the present 
study. Therefore our k satisfies the condition 
ka« I where a is the monomer size. Thus it 
follows from this condition along with the 
short-range nature of the direct correlation 
function that C(k) may be approximated by 
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C(k) C(0) (11) 

in the range of k studied by the light scattering 
experiment. 

The fluctuation theory for the light scat­
tering14 gives the relation S(O) = (RT/ M 0)/ 

(arr;ac) for binary solutions where M 0 is the 
monomer molecular weight, c the polymer 
mass concentration, and II the osmotic 
pressure of the solution. Therefore, from eq 
10, the quantity C(0) is related to the thermo­
dynamic quantity (arr;ac) by the equation 

C(0)=-1 [-1 __ M 0 (arr)] (12) 
c~ N 0 RT ac 

In Part 1, 1 we proposed an expression of 
(arr;ac) for solutions containing wormlike 
spherocylinders which interact each other by a 
hard-core repulsion u0 and a weak attractive 
interaction w. Taking the system with w=O 
as the reference state and w as a thermo­
dynamic perturbation, we obtained 

Mo (arr) M 0 (arr) 
RT & = RT 8c w=O 

- <f3w!__c, + · · · (13) 
N2 o 

0 

Here (arr;ac)w=O is (arr;ac) for the reference 
state, i.e., for the wormlike hard spherocylinder 
system, and <f3w) the binary cluster integral 
with respect to the attractive interaction 
potential w. The former quantity can be 
formulated by the scaled particle theory for 
wormlike spherocylinders as 

Mo (arr) 
RT ac w=O No(I-vc')2 

X l+---+----[ 
Be' 2Cc'2 ] 

1-vc' (I -vc')2 
(14) 

with 
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n z 
B=-Lcd+6v, 

2 

C= (v+ 1n2 d 3 )(; L;d+4v-: d 3 ) (15) 

where Le, d, and v are the cylinder length, 
diameter, and volume of the spherocylinder 
hard core, respectively. The quantity (f3w) is 
given by 

with a parameter 5 representing the strength of 
the attractive interaction (cf, eq A3 of ref 1). 
We should notice that eq 14 and 16 do not 
consider effects coming from the diagrams 
depicted in Figure 1 b and c, just like the GOZ 
equation. 

Schweizer and coworkers4 •6 - 8 applied the 
Percus-Yevick closure relation and calculated 
numerically C(k) for Gaussian and wormlike 
chains in melts. However the Percus-Yevick 
closure relation is applicable only to hard 
particle systems, so that it is not relevant to 
systems where solutes interact each other not 
only by the hard-core repulsion but also by 
some soft attractive interaction like poly(n­
hexyl isocyanate) molecules in DCM. 1 Al­
though Honnell et al. 4 proposed to use an 
effective hard-core diameter of the semiflexible 
polymer to consider the soft-core potential, this 
treatment may not be necessarily justified. Our 
above procedure can incorporate the soft 
potential effect into C(k) more properly. 
Furthermore while Curro et al.'s procedure 
needs some troublesome numerical analysis to 
obtain C(k), our procedure can calculate C(k) 
from the analytical equations (eq 11-16). It is 
noted that, for the hard sphere system, the 
scaled particle theory of Reiss et al. 15 gives the 
same equation of state as that from Wer­
theim's exact solution 16 for the Ornstein­
Zernike integral equation combined with the 

Percus-Yevick closure relations. This assures 
that our procedure gives the identical C(O) with 
Curro et al.'s (at least) in the hard sphere limit. 

Correlation Length 
From eq 10--12, the correlation length¢ for 

semiflexible polymer solutions can be cal­
culated from the equation (cf, eq 2 of ref I) 

¢2=_l__(S2) RT(~) (17) 
3 M arr 

where (S2) is the mean square radius of 
gyration at infinite dilution. The osmotic 
compressibility (ac;arr) can be calculated from 
eq 13-16. 

Ohta and _Nakanishi 17 presented a renor­
malization group theory for semidilute solu­
tions consisting of a fully flexible polymer and 
a good solvent. Their result can be written in 
the form* 1 

¢ 2 =~K(X)(S2(c)) RT(~) (18) 
3 M arr 

where (S 2(c)) is the radius of gyration of the 
chain at the polymer mass concentration c 

which depends on c due to the screening effect 
of the intramolecular excluded volume, and the 
function K(X) expresses the effect on ¢ of the 
multiple contact between a pair of different 
chains (cf, Figure le); the parameter X is 
proportional to c divided by the overlap con­
centration c* or the second virial term. Ohta 
and Nakanishi showed that K(X) changes from 
1 to 0.376 with increasing X or c. This indicates 
an important role of the diagrams like in Figure 
le in ¢ for flexible polymer solutions. 

Comparing this Ohta-Nakanishi's expres­
sion of ¢ for fully flexible polymer solutions 
with our result (eq 17), we find for semiflexible 
polymer solutions the relations K(X) = 1 and 
(S2 (c)) = (S2 ) irrespective of the polymer 
concentration. These relations correspond to 
the neglects of the diagrams shown in Figure 
1 b and c. Equation 17 predicts a weaker con-

*1 Our definition of the correlation length is different from Ohta-Nakanishi's by the factor 3' 12 , 
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centration dependence of for semiflexible 
polymers than that for flexible polymers. 

COMPARISON WITH OTHER THEORIES 

Recently Shimada, Doi, and Okano18 calcul­
ated S(k) for stiff-chain polymer solutions 
based on a generalized random phase approxi­
mation. In the theory, they utilized a basic 
integral equation for the response function 
which is directly related to the segment 
correlation function and then to S(k). Their 
integral equation has the same form as our 
GOZ equation (eq 1), if their response function 
and interaction potential are replaced by 
h(r) + w(r) and C(r), respectively. Therefore the 
mathematical structure of their theory is very 
similar to ours. (As mentioned in the appendix 
of ref 18, their theory considered exactly the 
same diagrams as in the present study; cf, 
Figure 1.) 

However a significant difference residues in 
the treatment of the nematic ( or orientation­
dependent) interaction between segments or 
monomers. They specified the segment confi­
guration by the position vector and the 
orientation vector and considered the orien­
tation dependence of the segment-segment 
interaction using a phenomenological potential 
w(r, u, u') given by 

w(r, u, u')=v0i5(r)-v{(u·u') 2 -+ }<r) (19) 

where r is the relative position vector, u and 
u' the orientation vectors of the two segments, 
v0 an isotropic excluded volume parameter, 
and v1 a nematic interaction parameter; b(r) 
is the delta function. In case v1 is not zero, 
Shimada et al.'s S(k) contains a function Ro(k) 
of the scattering vector k, which does not 
appear in our S(k) given by eq 10. This function 
expresses a long-range correlation of the 
segment distribution through the nematic 
interaction between contact segments on two 
stiff polymers, which tends to align the two 
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polymer chains and to make closer non-contact 
segments belonging to the two chains. 

Our theory takes into account the nematic 
interaction through the binary cluster integral 
(/Jw) with respect to the attractive interaction, 
but (/Jw) introduces no new k-dependent 
functions [like Ro(k)J in eq 10 for S(k). This 
difference comes from different treatments of 
the nematic interaction between our and 
Shimada et al.'s theories. 

When v1 in eq 19 is equal to zero, Shimada et 
al.'s S(k) is identical with our eq 10. However 
we must equate C(k) in eq 10 to the concen­
tration-independent quantity v0 to recover 
Shimada et al.'s result. This corresponds to the 
second virial approximation to (oII/oc) in eq 
12. Although Shimada et al. claimed that the 
third and higher virial coefficients are negligible 
for rodlike polymer solutions, this claim is 
correct only when the rodlike polymer is 
infinitely thin. 

In 1984, Benoit and Benmouna 19 generalized 
Zimm's classical light scattering theory20 with 
the single contact approximation to obtain S(k) 
wl1ich has the same form as ours and Shimada 
et al.'s with v1 =0. Benoit and Benmouna 
approximated the Mayer function for the 
interaction potential between monomers by the 
delta function, and expressed the function 
corresponding to C(k) in eq IO in terms of some 
excluded volume parameters. 

From the above comparison, it can be said 
that the form of S(k) given by eq 10 is rather 
general irrespective of the formalism. However 
the expression of the function corresponding 
to C(k) in eq 10 depends on the interaction 
potential form assumed. The approximation of 
the interaction potential or the Mayer function 
by the delta function (in Shimada et al.'s and 
Benoit and Benmouna's theories) loses detail 
information about the hard-core and attractive 
interactions between monomers. In this res­
pect, our theory is more detailed than the other 
two theories. 
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COMPARISON WITH EXPERIMENTAL 
RESULTS 

In this section, we compare our theory (i.e., 
eq 10 with eq 11-16 and 17) with the ex­
perimental data of the structure factor S(k) 
and the correlation length for dilute through 
semidilute solutions of a stiff-chain polymer 
poly(n-hexyl isocyanate) (PHIC) dissolved in 
a good solvent dichloromethane (DCM) which 
were reported in Part 1. 1 In order to calculate 
S(k) and~ from eq 10-16 and 17, we need 
three quantities (8c/8ll), w(k) (or P(k)), and 
<S 2 ); as mentioned above, the latter two 
quantities can be assumed to be equal to those 
at infinite dilution. In Part 1, we have already 
demonstrated that these three quantities are 
accurately described by theories for the 
wormlike chain or wormlike spherocylinder 
model (cf, sections 4.1 and 4.3 of ref 1). 
Therefore if the three quantities are calculated 
from these theories using the wormlike chain 
parameters determined previously, 1 no adjust­
able parameters remain in eq 10-16 and 17. 

Figures 2---4 compares the theoretical S(k) 
calculated from eq 10-12 with the experi-

10.0 

8.0 

"' 6.0 

S' 
' 

2.0 

PHIC-DCM ( 20°C ) 

K-3(Mw=11.1 xrn 4 ) 

15 

(C/C') 

0 

0.2169 0.927 

0.4298 1.84 
0.6288 2.69 
0.8591 3.67 
1.094 4.68 
1.485 6.35 
2.010 8.59 

20 

Figure 2. Comparison of experimental structure factor 
(circles) for DCM solutions of PHIC with Mw= 11.1 x 104 

with the theoretical one (solid curves) obtained from 
eq 10---16 using the molecular parameters: the molar mass 
per contour length ML= 740 nm - i, persistence length 
q = 21 nm, hard-core diameter d = 1.07 nm, and strength 
of the attractive interaction 5= -0.36nm, which were 
determined in Part 1. 1 
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3.0 
PHIC-DCM ( 20 °C) 

C-3 ( Mw = 34.2 x 10 4 ) 

c110·3 gcm·3 (c/c*) 

0 0 
0.9788 1.03 
1.877 1.98 
2.900 3.06 
3.802 4.01 

2.0 5.702 6.02 
6.048 6.38 

"' 
9.065 9.56 

0 12.03 12.7 
X 14.92 15.7 

'"' 

1.0 

\ 
c= 14.92x10·3 gcm·3 

0'----~'-------'------'---~ 
0 5 10 15 20 

k 2 I 1o·•nm·2 

Figure 3. The same comparison as in Figure 2 for 
PHIC with Mw=34.2 x 104 . 

PHIC-DCM ( 20 °C ) 

V-1-2 (Mw=106X10 4 ) 

8 

c;10·3 gcm·3 ( c I c*) 

0 0 
0.3866 0.863 

6 0.7705 1.72 
1.121 2.50 
1.508 3.37 
1.914 4.27 

'? 

X 4 

3013 6.73 

4.039 9.02 

•Cl) 

4.985 11.1 
6.094 13.6 
7.013 15.7 

2 

0'--------'----~----~-~ 
0 5 1D 15 

k 2 / 10·4 nm·2 

Figure 4. The same comparison as in Figure 2 for 
PHIC with Mw= 106 x 104 • 

391 



T. SATO, Y. JINBO, and A. TERAMOTO 

4.0 ~--------------~ 

PHIC-DCM I 20 °C ) 

C-3 (Mw= 34.2 x1Q 4 ) 
c / 10-3 gcm-3 I c I c· I 

14.92 15.7 

3.0 
12.03 12.7 

9065 9.56 

6.048 6.38 
5.702 6.02 

3.802 4.01 

2.900 3.06 

1.877 1.98 

0.9788 1.03 

0 

0 L_ __ ...L.....--~--~---~-~ 

0 15 20 

Figure 5. Plot of S(k)- 1 against k2; symbols, experi­
mental data shown in Figure 3 for PHIC with Mw= 
34.2 x 104; solid curves, theoretical values calculated as in 
Figure 3. 

mental S(k) for DCM solutions of three PHIC 
samples with the weight-average molecular 
weights Mw from I 1.1 x 104 to 106 x 104 . For 
all the samples displayed, the experimental data 
represented by the circles are successfully fitted 
by the theoretical solid curves over the 
concentration range examined. The agreement 
between experiment and theory in S(k) was also 
good for four other PHIC samples studied in 
Part I, although they are not displayed here. 

Since C(k) is taken to be independent of k 
from eq 11, the k-dependent term of S(k)- 1 

given by eq 10 is only w(k)- 1 which is 
independent of c. Therefore the plots of S(k)- 1 

vs. k2 for different c should be represented by 
curves with the same shape but with different 
intercepts. Figure 5 shows the same data for 
sample C-3 with M w = 34.2 x I 04 as in Figure 
3 by plotting S(k)- 1 against k 2 • The experi­
mental S(k) shown by the circles clearly exhibits 
this feature. 
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Figure 6. Comparison of the correlation length for the 
PHIC-DCM system with the present theory (eq 17); 
arrows, the overlap concentrations for the PHIC samples. 

Figure 6 compares the theoretical results of~ 
calculated from eq 17 with the experimental 
for the PHIC-DCM system. Here different 
circles represent the experimental data for 
different molecular weight PHIC samples 
indicated. For each sample, the theoretical 
solid curve nicely fits the data points. As 
mentioned in Part 1, 1 it is one of the most 
significant features that the c dependence of 
for PHIC solutions is much weaker than the 
prediction of the scaling law21 (~~c- 314) and 
of the renormalization group theory 1 7 (cf, 
Figure 9 of Part I) for flexible polymer 
solutions above the overlap concentration c*; 
in Figure 6, the overlap concentrations for the 
PHIC solutions are indicated by the arrows. 
This feature comes from weaker c dependences 
of the three quantities, K(X), <S2(c)), and 
(oc/oll) for the stiff-chain polymer-good 
solvent system than those for the flexible 
polymer-good solvent system. As mentioned 
in the previous section, the former two 
quantities are independent of c in the present 
theory for stiff-chain polymers, while they are 
decreasing functions of c in the renormalization 
group theory1 7 for flexible polymers in good 
solvents. Furthermore Figure 8 of Part I 
showed that (oc/oll) for the PHIC-DCM 

Polym. J., Vol. 27, No. 4, 1995 



Light Scattering Theory for Semiflexible Polymer Solutions 

0.35 ~----------------, 

PHIC-DCM ( 20 °C) 

0.3 
1/3 

I\ 0.2 
"' 
"' V 

Mw/10 4 = -"' W> 
0 11.1 
6 18.0 

0.1 0- 25.3 
I' 34.2 

-0 48.1 

• 72.4 • 106 

0.2 0.4 0.6 0.8 1.0 

RT(ac) 
Mw ill 

Figure 7. Plot of E//<S 2 ) against (RT/Mw)(iJc/iJII) for 
the PHIC-DCM system; solid line of slope 1/3, theoretical 
values. 

system exhibits a weaker c dependence than 
that predicted by the renormalization group 
theory for the flexible polymer22 •23 in a 
semidilute region. 

Equation 17 can be compared with experi­
mental data in a different way. Figure 7 shows 
the plot of ~2/<S2 ) against (RT/Mw)(oc/oII) 
for all the PHIC samples. Here the circles 
represent the results obtained from experi­
mental data of Mw, <S2 ), ~' and (oll/oc) 
presented in Part 1. As predicted by eq 17, the 
data points for all the samples closely follow 
the straight line with the slope of 1/3 and the 
zero intercept. This demonstrates clearly that 
<S 2(c))K(X) is independent of concentration 
for the PHIC chain in DCM probably due to 
the concentration independence of the two 
quantities. 

CONCLUDING REMARKS 

In this study, we have applied the GOZ 
integral equation to semiflexible polymer-good 
solvent systems to formulate the structure 
factor and correlation length for the systems. 
This theoretical approach is based on the 
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following assumptions: 
(1) The polymer chain conformation is not 

perturbed by the intramolecular excluded 
volume effect even in a good solvent (cf Figure 
I b). 

(2) As a result of the assumption (1), the 
screening of the intramolecular excluded 
volume effect by the intermolecular interaction 
does not take place in semidilute solutions, and 
then the single-chain conformation is indepen­
dent of polymer concentration. 

(3) The probability of simultaneous multi­
ple contacts between two polymer chains as 
illustrated in Figure le is negligibly small. 

The favorable comparison of the present 
theoretical approach with the spatial properties 
of PHIC-DCM solutions shown above vali­
dates that the above assumptions are fulfilled 
for this semiflexible-good solvent system. This 
fulfillment may be due to a very low monomer 
density inside one PHIC chain given by 
3N0 /4n<S 2 ); this low monomer density re­
duces the probabilities of the intramolecular 
monomer contact as well as of the multiple 
contact between two polymer chains. It is well 
known that the above assumptions are not 
fulfilled for flexible polymer-good solvent 
systems. Therefore the present (classical) 
approach may not be applicable to flexible 
polymer systems. 

If the degree of polymerization of a 
semiflexible polymer increases very much, 
intrachain monomer contacts and interchain 
multiple contacts may take place in the polymer 
solution. In fact, for PHIC with very high 
molecular weights, <S2 ) deviates upward from 
the unperturbed value (Mw~3 x 106), 24 and 
also the second virial coefficient exhibits a 
weak molecular weight dependence (M w 2 x 
106 ) 24 in a good solvent. (In the previous 
section, we have not used data of S(k) and for 
such high molecular weight PHIC samples.) 
These are the signs of the breakdown of the 
above assumptions, so that we may expect 
some crossover in spatial properties of semi­
flexible polymer-good solvent systems from 
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the stiff-chain behavior to flexible-chain beha­
vior with increasing the molecular weight 
of PHIC. Such crossover behavior may be an 
interesting problem to be studied in future. 
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