An NMR Study of Poly(vinylidene fluoride) Structure by ¹H, ¹³C, and ¹⁹F Triple Resonance Method

Etsuko KATOH,* Kenji OGURA,** and Isao ANDO***

* Tokyo Research Center, Central Glass Co., Kawagoe, Saitama, Japan ** NMR Application Laboratory, JEOL Ltd., Akishima, Tokyo, Japan *** Department of Polymer Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan

(Received May 18, 1994)

ABSTRACT: ¹H, ¹³C, and ¹⁹F triple resonance NMR experiments on poly(vinylidene fluoride) (PVDF) in solution were carried out in order to provide a detailed primary structural analysis of PVDF. The ¹⁹F NMR signals were measured by the ¹H broad-band decoupled ¹⁹F *J*-correlated 2D NMR and ¹H-¹⁹F *J*-correlated two dimensional (2D) methods, and the ¹³C NMR signals were measured by the ¹H broad-band decoupled ¹⁹F-¹³C *J*-correlated 2D method. On the basis of the spectral analysis, a complete primary-structural analysis of PVDF was carried out. From these results, it was demonstrated that the ¹H, ¹³C, and ¹⁹F triple resonance NMR method is a very useful means for analysing primary-structure of fluoropolymers.

KEY WORDS Poly(vinylidene fluoride) / 2D NMR / Triple Resonance / Primary Structure / COSY /

NMR spectroscopy is a powerful method for studying the microstructure of fluoropolymers, using ¹³C and ¹⁹F nuclei. Since both ¹⁹F and ¹³C nuclei have a wide chemical shift range. ¹³C and ¹⁹F chemical shifts are very sensitive to structural variation. In general, solutionstate ¹³C and ¹⁹F spectra of fluoropolymers are complicated because of the existence of various kinds of regio-irregular structures and stereochemical structures, and sometimes spin coupling splittings among ¹H, ¹³C, and ¹⁹F nuclei. This makes spectral analysis of the structure of the polymers difficult. For overcoming such a situation, it is very useful to use 2D NMR methods. 2D NMR methods, however, have been used only to a limited extent in synthetic fluoropolymers.¹

Recently, 2D NMR studies on the primary structure of poly(vinylidene fluoride) (PVDF) have been carried out² in addition to the one-dimensional (1D) NMR studies reported previously.³ Nevertheless, further complete analysis of the primary structure of the polymer is needed.

The purpose of this work is to carry out further detailed analysis of the primary structure of PVDF by means of the heteronuclear 2D NMR technique developed by in our laboratory. The resolved resonances in the observed 390 MHz¹⁹F NMR spectra of PVDF have been assigned by the reported ¹H broad-band decoupling ¹⁹F J-correlated 2D method¹ and our ¹H-¹⁹F J-correlated 2D method. The resolved resonances in simultaneous ¹H and ¹⁹F broad-band decoupling ¹³C NMR spectrum have been assigned by our ¹H broad-band decoupling ¹³C-¹⁹F J-correlated 2D method. On the basis of these results, a complete structural analysis of the stereochemical structures and regio-irregular structures of PVDF has been carried out.

EXPERIMENTAL

Materials

The PVDF samples used in this work are

prepared by emulsion polymerization at 50°C. This reaction was initiated with di-*n*-propyl peroxydicarbonate.

NMR measurements

376 MHz ¹⁹F, 400 MHz ¹H and 100 MHz ¹³C NMR spectra have been recorded on a JEOL α -400 spectrometer using a ¹H, ¹³C, and ¹⁹F triple resonance tuned probe. All the experiments have been carried out at about 10 w/v% solution of PVDF in dimethylsulfoxided₆ (DMSO-d₆) at 80°C.

¹⁹F NMR spectra have been recorded under ¹H broad-band decoupling. ¹⁹F chemical shifts are relative to CFCl₃.

¹³C NMR spectra have been recorded under simultaneous ¹H and ¹⁹F decoupling. The ¹H broad-band decoupling was carried out with Garp decouple sequence. As the ¹⁹F NMR spectrum has resonances with a wide range of chemical shifts, the ¹⁹F decoupling was achieved with the MPF8 decouple pulse sequence.⁴ In this experiments, irradiation point was set at 134.5 kHz (about -105 ppm).

The ¹H broad-band decoupled ¹⁹F Jcorrelated 2D (¹⁹F COSY with ¹H decoupling) NMR experiments were performed using the modified ¹H COSY pulse sequence. The ¹⁹F 90° pulse width was 9.2 μ s. The ¹H decoupled ¹⁹F COSY spectra were obtained with 20 scans for each of 512 FIDs which contain 4096 data points in the F₂ dimension over a spectral width of 16.0 kHz. A relaxation delay of 1.8 s was used. Zero-filling in the F_1 dimension was produced by a 4094×1024 data matrix with a digital resolution of 39.1 Hz per point for the F_2 dimension and 15.63 Hz per point for the F_1 dimension, respectively. For 2D Fourier transformation a sine-bell squared window function was used for both of the dimensions. The transformed data were then symmetrized.

The ${}^{1}H{-}{}^{19}F$ J-correlated 2D (${}^{1}H{-}{}^{19}F$ COSY) NMR experiments were performed using the modified ${}^{13}C{-}^{1}H$ heteronuclear COSY pulse sequence. The ${}^{1}H$ 90° pulse width

Figure 1. The pulse sequence for ¹H decoupled ${}^{13}C{}^{-19}F$ *J*-correlated 2D NMR measurement.

was 15.7 μ s and the ¹⁹F 90° pulse width 9.2 μ s. The spectra were acquired with 8 scans for each of 512 FIDs which contain 512 data points in the F₂ dimension. The F₂ spectral width was 1.2 kHz and the F₁ spectral width 13 kHz. Zero-filling in the F₁ dimension was produced by a 1024 × 512 data matrix with a digital resolution of 22.63 Hz per point in the F₂ dimension and 3.13 Hz per point in the F₁ dimension. For 2D Fourier transformation a sine-bell square window function was used for both of the dimensions.

The ¹H broad-band decoupled ¹³C-¹⁹F J-correlated 2D NMR experiments (¹³C-¹⁹F COSY with ¹H decoupling) were performed using the pulse sequence as shown Figure 1. The ¹³C 90° pulse width was 20.0 μ s and the 19 F 90° pulse width 9.2 μ s. The spectra were acquired with 320 scans for each of the 512 FIDs which contain 1024 data points in the F_2 dimension. The F₂ spectral width was 10 kHz and the F_1 spectral width 10 kHz, respectively. Zero-filling in the F_1 dimension was produced by a 1024×1024 data matrix with digital resolution of 9.77 Hz per point in the F_2 dimension and 20.41 Hz per point in the F_1 dimension, respectively. For 2D Fourier transformation a sine-bell square window function was used for both of the dimensions.

RESULTS AND DISCUSSION

¹⁹F NMR spectral Analysis

During the polymerization of vinylidene fluoride, head-to-head (H-H) and tail-to-tail (T-T) additions of the monomer units produce non-symmetric environments as regio-irregular structures. The existence of the H-H and T-T structures results in a ¹⁹F chemical shift distribution. The corresponding ¹⁹F NMR signals were assigned by ¹⁹F COSY experiments¹ and the γ -effect.⁵

376 MHz ¹⁹F NMR spectra of PVDF are reproduced in Figure 2, where (a) shows ¹⁹F NMR spectra without ¹H broad-band decoupling and (b) shows ¹⁹F NMR spectra with ¹H broad-band decoupling. By ¹H broad-band decoupling each of the signals becomes sharp and so new peaks appear by resolution of overlapped peaks. The spectral analysis is not easy because the spectrum is complicated with a number of weak peaks. To assign these peaks reasonably, ¹H decoupling ¹⁹F J-correlated 2D NMR (¹⁹F COSY with ¹H decoupling) experiments on the connectivities between the peaks were carried out. The spectra obtained are shown in Figure 3. Figure 3 (a) shows a ¹H decoupled ¹⁹F COSY spectrum in the range -91.0 to -96.0 ppm, corresponding to the $CH_2CF_2CH_2$ moiety. Figure 3 (b) shows a ¹H decoupled ¹⁹F COSY spectrum in the range -113.0 to -117.0 ppm, corresponding to the CH₂CF₂CF₂CH₂ moiety. The observed crosspeaks indicate a connectivity between a pair of fluorine atoms in which there exists a scalar Jcoupling through three or four bonds. The

Figure 2. ¹⁹F NMR spectra for PVDF without ¹H broad-band decouping (a) with ¹H broad-band decoupling (b).

An NMR study of PVDF structure

Figure 3. Contour plot ¹H decoupled ¹⁹F *J*-correlated 2D NMR of PVDF. The positive contour only is shown. Expanded region of -92.0 to -96.0 ppm (a) and expanded region of -113.0 to -117.0 ppm (b).

assignment is easily made by confirming the existence of the correlated peaks. According to these experimental results, the connectivities between peaks I and j, peaks g and b, peaks j and g, peaks f and b, and peaks k and f were clarified. On the basis of these connectivities, the irregular structures of PVDF were determined as follows.

$$\begin{array}{c} C\underline{F}_{2}C\underline{H}_{2}C\underline{F}_{2}C\underline{H}_{2}C\underline{F}_{2}C\underline{H}_{2}C\underline{F}_{2}C\underline{H}_{2}C\underline{F}_{2}C\underline{H}_{2}C\underline{F}_{2}C\underline{H}_{2}C\underline{F}_{2}C\underline{H}_{2} \left(1\right) \\ 1 \qquad j \qquad g \qquad b \quad f \quad k \end{array}$$

In Table I are shown ¹⁹F chemical shifts of PVDF compared with calculated ¹⁹F chemical shifts by Tonelli *et al.* These assignments support reasonably those assigned with the γ -effect calculation.

As mentioned above, the ¹⁹F spectrum of PVDF was successfully assigned by ¹⁹F COSY

Peak No.	Experimental chemical shift	Calculated chemical shift ^a
	ppm	ppm
a	-116.40	
b	-116.30	-116.0
с	-115.85	
d	-115.69	
e	-115.83	and an and a second
f	-114.08	-112.3
g	-95.42	-94.4
ĥ	-95.38	an canada
i	-93.24	
j	-92.85	
k	-92.76	_
1	-92.24	-92.0

 Table I.
 ¹⁹F chemical shifts of PVDF compared with calculated ¹⁹F chemical shifts

^a Calculated ¹⁹F chemical shifts were read from ref 4.

Figure 4. ¹³C NMR spectra for PVDF ¹H decoupling(a) and simultaneous ¹H and ¹⁹F decoupling (b).

An NMR study of PVDF structure

Figure 5. Contour plot of ¹H decoupled ${}^{13}C{}^{-19}F$ *J*-correlated 2D NMR of PVDF with the pulse sequence of Figure 1. The positive contour only is shown. The delays are setting by 1.25 ms (a) and 12.5 ms (b).

NMR with ¹H decoupling COSY method.

¹³C NMR Spectral Analysis

In Figure 4, ¹³C NMR spectra of PVDF are shown. A ¹³C NMR spectrum (Figure 4 (a)) with low signal-to-noise ratio was obtained by ¹H broad-band decoupling in spite of a number of accumulations. The low signal-to-noise ratio is the result of the J_{C-F} coupling that produces multiplets and the absence of an NOE from ¹⁹F nuclei. On the other hand, as shown in Figure 4 (b), a ¹³C NMR spectrum with high signal-to-noise ratio was obtained by ¹H and 19 F decouplings. The 13 C signals for the CF₂ carbons with seven kinds of magnetically unequivalent environments appear in the vicinity of 120 ppm, while the ¹³C signals for the CH₂ carbons with five kinds of magnetically-unequivalent environments appear in the chemical shift range from 20 to 50 ppm. So, it is clear that the ¹³C chemical shifts reflect the structural environment as with the case of ¹⁹F chemical shifts.

Next, we address with the assignment for ¹³C signals of PVDF by ¹³C–¹⁹F J-correlated 2D NMR ¹H broad-band decoupling $(^{13}C-^{19}F)$ COSY NMR with ¹H decoupling) methods as shown Figure 1. First, the ¹³C-¹⁹F COSY NMR with ¹H decoupling was observed by setting the delay time to 1.25 ms, because the ¹³C signal with direct C-F J-coupling constant of a few hundred Hz is enhanced. In this way, the cross-peaks can be observed between a pair of ¹³C and ¹⁹F nuclei which are interacting through a C-F J-coupling constant of a few hundred Hz. From these experimental results, the large C-F coupling constant of 400 Hz shows that the ¹³C and ¹⁹F nuclei are directly connected to each other. As shown in Figure 5 (a), the peaks 5 and 6 for the 13 C signal correlate with the peaks f and b for the ¹⁹F signal, respectively. Hence, the peaks 5 and 6 can be assigned to the carbons in the H-H structure. Similarly, the peaks 7, 8, and 10 for the ¹³C signal correlate with the peaks k, j, and g for the ¹⁹F signal, respectively. From the correlated peaks obtained, the CF_2 carbon peaks of PVDF can be assigned as follows.

$$\frac{CF_2CH_2C\underline{F}_2CH_2CF_2CH_2CF_2CH_2C\underline{F}_2CH_2C\underline{F}_2CH_2}{8 \quad 10 \quad 5 \quad 6 \quad 7} (2)$$

Next, the ¹³C-¹⁹F COSY NMR with ¹H decoupling was observed by setting the delay time to $12.5 \,\mathrm{ms}$, because the $^{13}\mathrm{C}$ signal with geminal C-F J-coupling constant of a few tens Hz is enhanced. In this way, the cross-peak can be observed selectivity between a pair of ¹³C and ¹⁹F nuclei which are interacting through the C-F J-coupling with a few tens Hz. From these experimental results, the C-F J-coupling constant of a few tens Hz obtained shows that the ¹³C and ¹⁹F nuclei connect vicinally with each other. As shown in Figure 5 (b), peak 3 for the ¹³C nuclei correlates with peaks f and k for the ¹⁹F nuclei. In this way the necessary connectivities between peaks 1 and b, peaks 2 and g, peaks 4 and g, and peaks 4 and j can be made. From these correlated peaks, the CH_2 carbon signals of PVDF can be assigned as follows.

 $\begin{array}{c} CF_2CH_2CF_2\underline{C}H_2CF_2\underline{C}H_2CF_2CF_2CF_2CH_2CF_2CH_2(3) \\ 4 & 2 & 1 & 3 \end{array}$

From the ¹³C-¹⁹F *J*-correlated ¹H decoupled 2D method, the ¹³C signals of PVDF

 Table II.
 ¹³C chemical shifts of PVDF

 compared with calculated ¹³C chemical shifts

Peak No.	Experimental chemical shift	Calculated chemical shift ^a
	ppm	ppm
1	22.79	22.8
2	28.46	31.0
3	36.63	38.0
4	42.28	44.0
5	118.14	119.3
6	118.65	118.0
7	119.55	
8	119.98	_
9	120.03	
10	121.65	122.8

^a Calculated ¹³C chemical shifts were read from ref 5.

can be assigned to the structures (3) and (4). In Table II are shown ¹³C chemical shifts of PVDF compared with calculated ¹⁹F chemical shifts by Tonelli *et al.* The assignment of the ¹³C signals of PVDF, which previously has been made only by the empirical γ -effect calculation⁶ has now been rigorously supported by the 2D experiments. Further more new ¹³C signals have been assigned.

Finally, it can be concluded that the PVDF sample prepared by emulsion polymerization has a very complicated primary structure with regio-irregularities and that ¹H, ¹³C, and ¹⁹F triple resonance NMR method is a very useful means for analyzing the primary-structure of fluoropolymers.

REFERENCES

1. M. D. Bruch, F. A. Bovey, and R. E. Cais,

Macromolecules, 17, 2547 (1984).

- (a) R. E. Cais and J. M. Kometani, *Macromolecules*, 18, 1357 (1985).
 (b) F. Lin and F. Lin, *J. Macromol. Sci. Chem.*,
 - (b) F. Lin and F. Lin, J. Macromot. Sci. Chem., A26, 1, (1989).
- (a) R. C. Ferguson, E. G. Brame, Jr., J. Phys. Chem., 83, 1397 (1979).
 (b) M. Grlitz, R. Minke, W. Trautvetter, and G. Weisgerber, Angew. Makromol. Chem., 29/30, 137 (1973).

(c) R. Liepins, J. R. Surles, N. Morosoff, V. T. Stannett, M. J. Timmons, and J. J. Wortman, J. Polym. Sci., Polym. Chem. Ed., 16, 3039 (1978).

4. (a) T. Fujiwara and K. Nagayama, J. Magn. Reson., 77, 53 (1988).

(b) T. Fujiwara and K. Nagayama, J. Magn. Reson., **81**, 245 (1988).

- 5. A. E. Tonelli, F. C. Schilling, and R. E. Cais, Macromolecules, 15, 849 (1982).
- 6. A. E. Tonelli, F. C. Schilling, and R. E. Cais, Macromolecules, 14, 560 (1981).