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ORIGINAL ARTICLE

Toxicogenomic module associations with pathogenesis: a
network-based approach to understanding drug toxicity

JJ Sutherland, YW Webster, JA Willy, GH Searfoss, KM Goldstein, AR Irizarry, DG Hall and JL Stevens

Despite investment in toxicogenomics, nonclinical safety studies are still used to predict clinical liabilities for new drug candidates.
Network-based approaches for genomic analysis help overcome challenges with whole-genome transcriptional profiling using
limited numbers of treatments for phenotypes of interest. Herein, we apply co-expression network analysis to safety assessment
using rat liver gene expression data to define 415 modules, exhibiting unique transcriptional control, organized in a visual
representation of the transcriptome (the ‘TXG-MAP’). Accounting for the overall transcriptional activity resulting from treatment, we
explain mechanisms of toxicity and predict distinct toxicity phenotypes using module associations. We demonstrate that early
network responses complement traditional histology-based assessment in predicting outcomes for longer studies and identify a
novel mechanism of hepatotoxicity involving endoplasmic reticulum stress and Nrf2 activation. Module-based molecular subtypes
of cholestatic injury derived using rat translate to human. Moreover, compared to gene-level analysis alone, combining module and
gene-level analysis performed in sequence identifies significantly more phenotype-gene associations, including established and

novel biomarkers of liver injury.
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INTRODUCTION

Safety remains a major cause of attrition during clinical trials.
Prior to clinical testing, all clinical candidates are evaluated in
animals to define the spectrum of toxicities that might occur in
human subjects and safe doses for clinical testing.® However,
continued occurrences of clinical safety terminations calls into
question the value of nonclinical testing in predicting human
risk.”® Nonetheless, when confidence in nonclinical safety data is
high compounds are more likely to be safe in humans’®
Uncertainty regarding safety predictions occurs at three major
transition points in biopharmaceutical testing: (1) the transition
inherent in using simple in vitro models to predict in vivo
nonclinical (animal) results early in discovery; (2) the transition
from nonclinical testing to human clinical trials; and (3) the
transition from testing in well-controlled clinical trials to the larger
diverse patient population post approval. In other work, we
addressed the first transition by associating chemical properties
with toxicity early'® and by developing a systems level framework
using co-expression networks to evaluate how well mechanisms
extrapolate from primary cell cultures to the same organ in vivo."
Here we address the second transition by investigating the utility
of network-based toxicogenomic approaches for predicting
mechanisms of drug-induced liver injury and the translation from
rodent to human.

Considerable effort has been invested applying transcript
profiling to risk assessment using methodologies such as gene
signatures,'? pathway-based enrichment analysis,'> co-expression
networks,''> and adverse outcome pathways.'® However, tox-
icogenomic approaches to safety testing remain challenging and
have achieved only modest utility in addressing uncertainty in
safety predictions, largely as an investigative tool. Nonclinical
safety testing remains largely dependent on traditional clinical
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chemistry and histologic evaluation. Gene signatures are effective
as classifiers but their development requires large and costly
compendia of transcript profiles and may not translate to other
models and mechanisms. Limitations in measurement technolo-
gies and the inherent stochastic nature of biological systems pose
additional analytical challenges to establishing the relationship
between thousands of variables (genes) and toxicity properties
using small sets of training compounds. Pathway or Gene
Ontology (GO) enrichment analysis can reduce noise but are
biased toward known biology captured in existing
repositories.'>'”

Unsupervised methods that organize high-dimensional data
into networks based on biologically relevant coalescent properties
reduce noise and boost signal detection.'®'® This seems intuitive
since organisms demonstrate modularity and conservation of
biology across evolution.??' One such approach, weighted gene
co-expression network analysis (WGCNA), uses the property of co-
expression to organize genes into gene networks or modules.?
Here we develop a co-expression framework called the ‘toxicoge-
nomic module associations with pathogenesis’ (the TXG-MAP) and
integrate it with standard pathology evaluation to characterize
mechanisms of drug-induced liver injury. We demonstrate the
utility of the TXG-MAP for common applications. First, we illustrate
how co-expression modules reveal mechanisms of pathogenesis
concurrent with or preceding toxicity phenotypes. Second, we
illustrate the utility of modules for identifying marker genes in
small data sets, while controlling for false discovery. Third, we use
case studies to illustrate utility in elucidating specific mechanisms
of liver injury. Fourth, we identify transcription factors that couple
upstream signals to co-expression changes. Finally, we demon-
strate that module-based molecular phenotypes for rodent liver
injury translate to human liver disease.
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MATERIALS AND METHODS

Microarray data processing from Drug Matrix, TG-GATEs and GEO

The Drug Matrix (DM)*> and open TG-GATEs (TG)** databases constitute
two large publicly available resources describing the effects of drugs and
other compounds in rat liver. They contain gene expression data from
Affymetrix microarrays, linked to traditional histology and clinical
chemistry results for 3528 treatment groups from TG and 654 from DM.
A treatment group denotes three or more animals receiving a given dose
of drug or vehicle, usually administered daily by oral gavage, and killed
following drug exposures lasting from 3 h to 29 days. The treatment
groups analyzed in this work are given in Supplementary Table S1.
Methods for obtaining, processing and analyzing rat liver microarray data
from DM and TG are described in detail elsewhere;'" details for Gene
Expression Omnibus (GEO) sets are provided in Supplementary Methods.

Rat liver co-expression networks

Using 654 treatments from DM rat liver and a subset of 9071 liver-
expressed genes, 415 co-expression networks were obtained using
WGCNA?? as described in reference.!” Co-expression modules represent
gene sets that show correlated behavior (that is, co-induced or
co-repressed) across the DM rat liver database. A given module
summarizes (log) fold change of its constituent genes, weighted by their
individual correlation with the first principal component (eigengene) of the
module. For each pair of 415 modules, the Pearson correlation of module
scores was calculated using 654 DM rat liver experiments. Modules with
Pearson R>0.8 behave similarly across the DM database (induced or
repressed similarly upon drug treatment), and were merged to reduce
redundancy among modules; merged modules contain the suffix ‘m’, for
example, 46m was merged from 46 and 49. A set of 284 merged modules
and unmerged modules with R < 0.8 versus all others were labeled as
‘base’ modules. The TXG-MAP was obtained by clustering modules in R
applying Ward’s algorithm to a 415x415 Pearson distance matrix
(1=Pearson R). The resulting dendrogram was imported as a network
into Cytoscape and rendered using the yFiles circular layout with small
manual adjustments to improve node placement. The Cytoscape session
file is available in Supplementary Information.

For each chemical treatment, we obtained a single numeric eigengene
(score) per module that aggregates fold-change values for the underlying
genes. The scores for each module were normalized across the 654 liver
experiments to have a unit variance. As such, a score denotes the degree
of induction or repression achieved by a given treatment in the context of
a large collection of drug perturbations (a score of 2 is exceeded ~4% of
the time, 3 exceeded ~ 1% of the time and so on).

Defining toxicity phenotypes

Pathology assessment of drug-induced liver injury is typically defined in
nonclinical studies by combining morphological assessment (histology)
and biochemical measures (clinical chemistry). Occurrence of histology
findings or changes in clinical chemistry results can occur in isolation or in
combination. In isolation, they may be considered non-adverse, for
example, an observation of hypertrophy or an increase in alanine
aminotransferase (ALT) < 300% with no other observation, or adverse,
for example, ALT >100% with a finding of necrosis.

We use the term ‘anchoring phenotype’ to designate treatments
resulting in a given histologically defined lesion (for example, single-cell
necrosis) or clinical chemistry result (for example, increased total bilirubin).
In order to study the association between module scores and different
toxicity phenotypes, we identified treatments from TG in Supplementary
Table S1 resulting in a severity score above a pre-defined threshold
(usually a severity score >0.67) for a given anchoring phenotype and
severity scores <0.67 for all other histology findings except infiltration/
inflammation (Supplementary Methods). The latter was not considered in
defining toxicity phenotypes as it co-occurs with many other histology
findings and is generally not considered adverse in isolation. Since certain
histology findings frequently co-occur, we defined different levels of
selectivity favoring the anchoring phenotype. An example of the impact of
stratification by level on the number of treatments can be seen for the
anchor ‘single-cell necrosis’ that we treat herein as a morphological
correlate of apoptosis. For ‘single-cell necrosis, (4) any other finding’, there
were 65 TG treatments in Supplementary Table ST with score >0.67 for
single-cell necrosis and <0.67 for congestion, necrosis, dilation, fibrosis,
increased glycogen, hematopoiesis, hyperplasia, hypertrophy, mitosis or
vacuolation. Here, ‘any other finding’, unless further clarified in the
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phenotype label, means ‘any other finding at severity <0.67" and we use
the shorter term throughout. Since hypertrophy and necrosis co-occur
most frequently with single-cell necrosis, level 3 (‘single-cell necrosis, (3)
allowing hypertrophy or necrosis’) eliminated all treatments causing any of
the aforementioned findings except hypertrophy or necrosis at maximal
severity of 0.67, leaving 54 treatments. Level 2 (‘single-cell necrosis, (2)
allowing hypertrophy’) only allowed low-severity co-occurring hypertrophy
(49 treatments) and level 1 (‘single-cell necrosis, (1) no other findings’) left
44 treatments where the only lesion present was single-cell necrosis. For
other anchoring phenotypes, such as bile duct hyperplasia (BDH), the
trade-off from level 3 to level 1 (33 versus 12 treatments) was more
marked, and the latter includes nine 2-AAF treatments (that is, high purity,
but few examples and probably not generally representative of BDH-
causing compounds given dominance of one compound). In total, we
defined 36 toxicity phenotypes each of which was anchored by a primary
finding, with 1-4 levels of selectivity.

Association of co-expression modules with toxicity phenotypes

For a given module, the association between module score and the
occurrence of toxicity phenotypes using TG data (for example, positive
versus negative for BDH) was quantified using Cohen’s d, a measure of
effect size. We noted that the average absolute module eigengene
(avgAbsEG), a measure of overall transcriptional activity, had a large effect
size for many toxicity phenotypes. Logistic regression was performed to
determine the contribution of a given module in explaining the residual
odds of toxicity after accounting for avgAbsEG, and the significance of the
module represented as p-adj (Supplementary Methods).

Comparing one-stage versus two-stage marker gene identification

Molecular markers for toxicity (and other) phenotypes are usually defined
via genome-wide analyses with adjustment of P-values to control the false
discovery rate. For each toxicity phenotype, we repeated the above logistic
regression analysis using each individual genes’ log fold change at 1 day to
predict toxicity phenotypes manifesting at 4 days or later (that is, 20 269
regressions, one for each of 20 269 probe sets mapping to one or more of
14 078 genes represented on the array). The resulting p-adj values were
converted to g-adj reflecting 20 269 tests.

A two-stage approach was employed for identifying genes associated
with toxicity phenotypes: (1) identify modules with strong association to
the phenotype, that is, g-adj < 0.01, then (2) analyze the association of
individual genes that make up all significant modules and perform false
discovery rate adjustment only for those genes (rather than the complete
genome; Supplementary Methods).

Module similarity analysis using case studies

To identify compounds with similar mechanism and pathogenesis, we
searched all module profiles using a treatment with an established
mechanism as ‘bait’. We modeled each experiment as a vector of 284 base
module scores and compared the bait experiment to all other experiments
by calculating the Pearson correlation R of the two vectors. Bait
experiments were selected from representative compounds or treatments
with clearly defined mechanisms of action and interpretations regarding
mechanisms of toxicity. For tunicamycin (ER stress) and butylated
hydroxyanisole (BHA; oxidative stress), we selected the dose-time
combination with the maximum avgAbsEG as the bait experiment (that
is, the dose—time combination giving maximum transcriptional response).

Bile duct ligation study

To study the interplay between cholestatic injury progression and liver
gene expression, we performed a rat bile duct ligation study comparing
three ligated versus three sham animals at time points ranging from 3 h to
14 days post surgery. Clinical chemistry and histology assessment of liver
tissue were performed for each animal, and liver gene expression analyzed
using Affymetrix RG230-2 microarrays (Affymetrix, Santa Clara, CA, USA).
We also performed ChiP-seq on pooled tissue from animals following 24 h
and 14 days ligation, using the following transcription factors: cJun, Sp1,
Fxr, Hnfla. Full details on the study are provided in Supplementary
Methods.

The expression and ChIP-seq data have been deposited in NCBI's Gene
Expression Omnibus®> and are accessible through GEO Series accession
number GSE87696 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc =
GSE87696) and GSE87730.


http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc�=� GSE87696
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc�=� GSE87696

Ethics statement

The rat bile duct ligation study was conducted at Covance Laboratories
(Greenfield, IN, USA), a facility accredited by the Association for Assessment
and Accreditation of Laboratory Animal Care International (AAALAC).
Studies were approved by the Eli Lilly Animal Care and Use Committee at
Covance Laboratories and conducted in accordance with the Guide for
the Care and Use of Laboratory Animals as adopted and promulgated by
the US National Institutes of Health, and were approved by the Eli Lilly
Animal Care and Use Committee. Rodent and de-identified human gene
expression data from Drug Matrix, open TG-GATEs and the Gene
Expression Omnibus (GEO) repository are freely available to the public.
No institutional review board approval was sought to analyze those data.

RESULTS
Liver co-expression networks and the TXG-MAP

To develop the TXG-MAP, we utilized data from two large publicly
available rat liver expression repositories, DM** and open TG.**
Using WGCNA and 9071 liver-expressed genes, we defined 415
networks consisting of 5-656 co-expressed genes across all 654
DM experiments (Supplementary Table S1). The module correla-
tion patterns based on scores across all treatments were
represented in a simplified visual dendrogram, the TXG-MAP,
analogous to phylogenetic trees used for conveying sequence
similarity (Figure 1). Modules in close proximity on the map
(measured by traversal of branches) tend to be induced or
repressed coordinately. A labeling system facilitates navigation of
the map (Supplementary Table S2 and Figure 1b). Using gene set
enrichment, we assigned putative biological significance and
predicted transcriptional regulators for each  module
(Supplementary Table S2). For example, the A-branch is highly
enriched in mitochondrial genes with adjacent sub-branches
enriched in Gene Ontology (GO) terms pertaining to lipid
metabolism. As expected, modules in these branches respond to
drugs such as statins and fibrates (Supplementary Figure S1).
When we compared gene set analysis to co-expression modules,
we noted that some modules yield equivalent results (for example,
46m module scores versus REACTOME cholesterol biosynthesis;
Figure 1d), but many unique modules capture biology not
represented by canonical pathways (Figure 1e). As noted below,
we found that some of these unique modules were highly
correlated with specific liver toxicity phenotypes. A reference table
of all modules discussed in the text is provided in Supplementary
Table S3.

Modules reveal mechanisms of pathogenesis concurrent with liver
injury

We analyzed relationships between module scores, reflecting
induction or repression of underlying genes, and the presence
(positives) or absence (negatives) of liver findings for each of
36 toxicity phenotypes anchored to a histology finding
(Supplementary Table S4). Module associations with toxicity
phenotypes, measured as effect sizes (Cohen’s d), are either
positive (induction) or negative (repression) and considered
‘concurrent’ since liver findings and expression changes occurred
at the same time. Effect sizes greater than 0.8 or less than — 0.8 are
considered large.?

Module signatures for toxicity phenotypes were defined as
vectors of 415 effect sizes—one per module. Hierarchical
clustering on these signatures revealed limited discrimination of
several histologically distinct adverse phenotypes (Figure 2a). We
noted that the average absolute module score (avgAbsEG), a
measure of the overall transcriptional activity, was strongly
associated with many adverse toxicity phenotypes (Supple-
mentary Table S4). This result is intuitive: the occurrence of
histologically defined lesions is indicative of liver injury, and
injured cells have altered expression for many genes. Therefore,
we used logistic regression treating avgAbsEG as a covariate and
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quantified the P-value for each module in explaining the odds of
toxicity. We refer to this P-value as p-adj throughout, that is, after
adjusting for avgAbsEG. Ranking module associations with toxicity
based on p-adj versus effect size revealed greater differences
among toxicity phenotypes having large effect sizes for avgAbsEG
(Supplementary Figure S2 and Supplementary Table S5). For
example, module 8 (GO-CC, ‘proteasome complex’, Suppleme-
ntary Table S3) has a modest effect size versus single-cell necrosis,
ranking 341 out of 415, but ranks 20th ( p-adj of 5.7 x 10~ >) when
controlling for avgAbsEG.

We investigated the utility of p-adj for creating module-based
signatures of toxicity phenotypes (Figure 2b). This approach
substantially enhanced our ability to identify modules, and the
underlying biological processes, uniquely associated with a
toxicity phenotype or a grouping of related toxicity phenotypes
anchored by common histology findings, for example, single-cell
necrosis. We identified 98 phenotype pairs having Pearson R > 0.7
when clustering on signed log10 p-adj, versus 228 using effect
sizes (Supplementary Table S6). Phenotypes related to necrosis,
single-cell necrosis and BDH that were not differentiated when
clustered on effect size emerged as three distinct clusters using
p-adj. The use of avgAbsEG as a covariate distinguishes
phenotypes that have apparent similarity due to their common
association with large transcriptional effects, but little overlap in
underlying mechanisms characterizing the injury.

Using one representative phenotype per cluster (see below), we
identified the most strongly associated modules for each toxicity
phenotype, among those modules having false discovery rate-
controlled p-adj lower than 0.01 (Table 1; referred to as g-adj
throughout). Some top ranked modules were located on the map
in areas with less biological annotation, for example, C.I and ClI
(Figure 2c). Mechanism can be inferred from enriched GO terms,
for example, hypertrophy and ‘glutathione metabolic process’ for
module 42m or single-cell necrosis and ‘MAPK signaling’ for
module 29 (Table 1). Modules 70 (enriched with cell cycle arrest
genes, including Ddit3) and 29 (enriched for MAPK signaling
consistent with apoptosis processes in liver’”’) were associated
with single-cell necrosis, but not with necrosis (non-programmed
cell death; single-cell necrosis is synonymous with programmed
cell death or apoptosis in histological evaluation®®). Thus,
clustering on p-adj revealed distinct module associations with
distinct forms of cell death not observed when clustering on effect
size. The similarity between necrosis and BDH in Figure 2b arises
due to the association of both toxicity phenotypes with modules
related to inflammation and leukocyte activation (55m, 2m), and
several in the E.ll branch associated with decreased hepatocellular
function.

All analyses of module versus toxicity relationships in this work
focused on the TG expression, histology and clinical chemistry
results, owing to the larger size of the database and diversity of
toxicity phenotypes compared to DM. For BDH, similar results
were found when using DM for defining module versus toxicity
relationships. For three other phenotypes, we found few
significant associations in DM (Supplementary Results).

Modules reveal mechanisms of pathogenesis preceding liver
injury

The module—phenotype associations described above provide
insight into mechanisms concurrent with injury. Identifying
mechanisms that precede injury is also of great interest, that is
induction or repression of genes or modules within the first 24 h
after a single dose that are prodromal for the occurrence of
specific toxicity phenotypes in multi-dose studies of longer
duration. We focused on 361 drug-dose combinations with
expression data from single-dose studies of 3-24 h duration, and
labeled them as positive or negative for the occurrence of a
toxicity phenotype between 4 and 29 days. We limited analysis to
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a subset of 11 toxicity phenotypes, selected as representative of
expression clusters in Figure 2b, balancing selectivity of the
histology anchor against the number of positive drug—dose pairs
(Supplementary Table S4; all further analysis refers exclusively to
this subset). After a single dose, we found more significant
module—phenotype associations at 24 h prognostic of adversity
after 4-29 days (for example, 2, 10, 0 and 19 modules with g-adj

< 0.01 for BDH at 3, 6, 9 and 24 h, respectively; Supplementary
Table S5). The importance of controlling for avgAbsEG was
highlighted by the large effect size for certain pathologies,
notably BDH (Supplementary Table S4). In general, modules lost
significance after accounting for avgAbsEG, however in some cases
significance improved markedly. For example, when predicting
the occurrence of BDH from univariate logistic regression, module
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Figure 1. Overview of the toxicogenomic module associations with pathogenesis (TXG-MAP) for analysis of liver gene expression changes. (a)
Module 69 consists of co-induced genes; genes are ordered clockwise starting at the hub gene (Mbd2), with decreasing correlation against
the module eigengene. Nodes are colored by log10 fold change upon treatment with lipopolysaccharides (LPS) (1.25 mg kg ™', 6 h). (b) 415
Modules are organized on the map using a branch labeling system, with modules in proximity (by branch traversal) reflecting the degree to
which they are similarly perturbed across 654 Drug Matrix (DM) rat liver experiments. Each module can be summarized via one numeric score
(the eigengene), with induction (red) or repression (blue) denoted in node color after treatment with LPS. Module functions were assigned
using GO term enrichments based on gene membership. (c¢) Comparing the module 69 score for the LPS treatment in panel b treatment
against the database of 4182 rat liver treatments from DM and TG-GATEs provides context for the magnitude of the effect. (d) Comparing
scoring of 654 DM experiments using module 46m, which contains genes involved in cholesterol biosynthesis, to gene set analysis (GSA)
scoring of the REACTOME cholesterol biosynthesis pathway. (e) Graphical representation indicating the number of pathways or GO terms
(size) and highest Pearson correlation obtained by comparing scores for each module to GSA scoring of 1840 canonical pathways and GO-
biological process terms for 654 DM experiments.

>

Figure 2.  Pairwise similarity and bi-clustering of toxicity phenotypes. Each toxicity phenotype anchored by a signal histology finding or clinical
chemistry result (methods) was defined using 415 values (one per module) reflecting; (a) effect size, and (b) signed log10 p-adj, which
accounts for the contribution of avgAbsEG (average module score) in explaining a toxicity phenotype. Both values represent the statistical
association between module score and manifestation of the toxicity phenotype. Region (1) in a aggregates histologically distinct toxicity
phenotypes, which are resolved into three distinct regions aligning with a unique anchoring histology in b. (c) Module signed log10 p-adj
values for representative toxicity phenotypes on the TXG-MAP; positive/negative values indicate that module induction or repression was
observed when the lesion was present. The dendrogram was cut at a height corresponding to R=0.7. The numerical value following the
toxicity phenotype denotes its level of selectivity, for example, 1=no co-occurring pathology (Supplementary Table S4). Module size
corresponds to the number of genes in a module.
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39 was marginally significant with P=0.08, ranking 298 of 415
modules. However, including avgAbsEG as a covariate improved
significance to p-adj=2e-8 and ranked first of 415 modules.
Notably, module 39 contains Krt19, a marker for bile duct
epithelial cells.?**° Thus, for a given avgAbsEG, higher expression
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of module 39 genes predicts BDH indicating a mechanism
involving extracellular matrix remodeling (Table 1). Further,
multiple modules can be combined within classifiers for predicting
29-day study outcomes (adverse versus non-adverse) using
compound-induced expression changes at 1 or 4 days, improving
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on the sensitivity observed when
assessment (Supplementary Results).

using histology-based

Utilizing modules to enable marker gene identification via a
two-step approach

Molecular markers for toxicity (and other) phenotypes are usually
defined at the gene level. We hypothesized that co-expression
modules may have advantages (for example, reduced risk of false
positive findings due to lower number of endpoints examined—
415 versus ~ 20 000) but also disadvantages (missing a gene with
strong association to a phenotype). Therefore, we repeated the
above analysis using each individual genes’ log fold change at
1 day to predict toxicity phenotypes manifesting at 4 days or later
(that is, one-step approach). We identified 19 genes having g-adj
< 0.01 and >3 fold-increased odds of observing BDH upon a one
s.d. change in expression; 11 of these genes were from modules
meeting the same criteria (Supplementary Table S7). Conversely,
by starting with 19 BDH-associated modules and evaluating only
their 514 constituent genes, 116 genes were significant predictors
using the same criteria (Supplementary Table S8). In summary, we
identified approximately six times more predictive genes at the
same level of false discovery control (1%), using the two-step
approach. Further, 8 of 19 modules have more favorable p-adj for
predicting BDH than any of their constituent genes implying that
individual genes in the network have synergistic roles in
pathogenesis. Thus, by first linking a module to the phenotype
of interest and then studying its constituent genes for the same
phenotype, we found that module- and gene-level analyses play
complementary roles for predicting toxicity and understanding
mechanism.

Utilizing co-expression modules to understand stress—response
pathways in mechanisms of drug-induced liver injury
Understanding mechanisms for unexpected safety findings is
critical in framing the clinical risk based on nonclinical results. The
mechanism-based monitoring strategy as well as an under-
standing of whether injury is adaptive and reversible or
progressive will impact the clinical dosing schedule. For example,
oxidative stress and antioxidant response play well-established
roles in drug-induced liver injury.>' We investigated module
responses for several known Nrf2-inducing treatments and
identified modules that differentiated the role of Nrf2 activation
in adaptive hepatocellular hypertrophy versus non-adaptive
progression  to  hepatocellular  necrosis and  fibrosis
(Supplementary Results). In the next two sections, we focus on
novel applications of the TXG-MAP for understanding liver injury.

Case study: endoplasmic reticulum stress as a novel mechanism
for ethionamide hepatotoxicity

Tunicamycin causes unfolded protein to accumulate in the
endoplasmic reticulum (ER), activating the unfolded protein
response (ER stress). ER stress genes, such as Atf4 and Hspa5
(Grp78), help alleviate excess protein load; with extended ER stress
activation of genes such as Ddit3 (Chop) contribute to cell death.
When describing treatments using a vector of module scores, the
drug most similar to tunicamycin in the database was ethiona-
mide, a second line therapy for mycobacterial infection with
hepatotoxicity liability®* (Figure 3). We found no literature reports
that ethionamide causes ER stress. The only histological finding for
tunicamycin was single-cell necrosis, which was also the dominant
finding for ethionamide treatment across dose—time combinations
(Supplementary Table S1).

Among modules most induced by tunicamycin and ethiona-
mide, module 70 contains Ddit3 and was top-ranked for single-cell
necrosis/apoptosis (Table 1), and module 75 contains canonical
ER chaperones Hspa5 and Hsp90b1 (Grp94) (Supplementary
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Table S3). Notably, module 85 (B.I branch) was also induced by
both compounds and contains Atf4 and Atf4-target genes
(Supplementary Table S3). Thus, based on the composition of
constituent genes, module responses were consistent with ER
stress and then overload leading the cell death.>*?*

Module changes in rat hepatocyte treated with tunicamycin and
ethionamide were similar including the four ER stress modules in
C.lb (Supplementary Figure S3). Treating rat primary hepatocytes
with ethionamide increased Atf4, Hspa5 and Hsp90b1 protein and
processing of Atf6 to the transcriptionally active form, evidence of
ER stress (Figure 3d). Thus, we identified and validated a putative
mechanism for ethionamide hepatotoxicity and predicted the
associated pathology (single-cell necrosis). Chemical structure-
based approaches, such as QSAR and read-across for toxicity
prediction, would not have led to this result as ethionamide is a
small molecule and tunicamycin a complex natural product.>

Case study: cellular mechanisms of bile duct hyperplasia

The prior case studies focus on findings that are primarily
hepatocellular. Progressive cholestatic injury involves cell types
other than hepatocytes.?® BDH (expansion of bile duct epithelia), a
common sequela of cholestasis, may occur with or without co-
occurring fibrosis (stellate cell activation), oval cell hyperplasia
(expansion of hepatic precursor cells), and inflammation due to
Kupffer cell activation and/or invading lymphocytes.>**3*%*” Char-
acterizing BDH as adverse or non-adverse may depend on the
severity of hyperplasia, the morphology of the biliary epithelium,
occurrence of inflammation, and other factors.>® We conducted a
rat bile duct ligation study, a common model for cholestatic liver
injury and BDH,***® and monitored injury and expression changes
from 3 h through 14 days. Necrosis, BDH, fibrosis and inflamma-
tion progressed over time, as expected (Figures 4a and b).

Thirteen compound treatments were similar to bile duct ligation
days 1-14, of which 11 also caused BDH and/or fibrosis (Supplem-
entary Table S9). We identified induced modules associated with
BDH, both concurrent and predictive (that is, expression change at
24 h preceding histological changes), as well as modules
associated with co-occurring necrosis (Figure 4c and Table 1).
Module 55m was associated with necrosis (rank 11 of 415
modules, concurrent), and BDH (ranks 7 and 4 for predictive and
concurrent, respectively). Module 55m annotation was not
extensive but included GO terms ‘cytoskeletal organization’ and
‘membrane raft organization’, due to membership of the hub
genes Anxa2 (annexin 2) and its binding partner S100a10, along
with other genes involved in membrane and cytoskeletal
organization®' (Table 1). Module 88 was strongly associated with
BDH (ranks 3 and 7 for predictive and concurrent, respectively)
and contains keratins 8 and 18, components of intermediate
filaments in hepatocytes and other simple epithelial cells. Release
of cytokeratin 18 is a well-known biomarker of liver injury and a
target for activated caspases.*” Among the modules associated
with BDH, module 39 was particularly interesting, since it was top-
ranked at 1 day (Table 1) and uniquely associated when induced
but was repressed in association with hypertrophy and other non-
adverse phenotypes (Supplementary Table S5). Enrichment for GO
terms included ‘extracellular matrix organization’ and ‘collagen
fibril organization’. These modules exhibit time-dependent induc-
tion for several BDH and fibrosis-inducing compounds (Suppleme-
ntary Figure S4).

We noted that module 39 contains genes top-ranked for BDH
when considered individually, including Tspan8, Krt19, Sox4, LoxI1
in the top 30 (genome-wide) concurrent with BDH, and Lgals1,
Col1a2, Fbn1, Tagln, Krt19 and Tpm2 in the top 30 predictive
of BDH (Supplementary Table S8). Some of these genes are
markers for histological correlates of the ductular reaction, for
example, proliferation of duct-like cells (Krt19) or activation
of hepatic stellate cells (HSCs) and deposition of collagen



Table 1. Key modules associated with toxicity phenotypes

Phenotype Module Branch Representative genes Annotation (P-value®, number of genes)
Biliary hyperplasia 73m Ala Ctnnal, Atxn1, Faim Microtubule anchoring at centrosome (5, 2)
69m/88 C.l.e  Flotl, Flot2, Krt8, Krt18, Cellular protein localization (4,12)
55m Clla  Anxa2, Acot9, Capn2, Cdc42ep5, Dynlt1, Fas,Pak1, Rhoc, S100a10 Membrane raft assembly (4, 2); regulation of cytoskeleton
(4, 2)
39 Ela Col1a1&2, Col5a2, Col6a1&2, Fbn1, Krt19, LoxI2, Lum, Sox4, Tspan8 Extracellular matrix organization (14, 11)
Hemato-poiesis 50 Cll.a  A2m, Cxcl1, 1I7, Jak3, Lbp, Lcn2, Pcolce, S100a8, Stat3, Timp1 Immune response (9, 13), response to bacterium (6, 9)
40m E.la. C4dbpa, C1r&s, C2, C4bpa&b, Cfb&i, Cp, Fga Complement activation (16, 10)
13m Ela. Itih4, F2, Il4r, Apoc3, Fn1, Saa4, Serpina3n, Tf,C8a&b, Cfh, Serpinf2, Fgb Regulation of protein processing (7, 14)
Hypertrophy 120m Alb Akr7a2, Cryz, Flt1, Prdx1, Selenbp1 Slc39a3&4, Transition metal ion transport (3, 3)
42m Alb  Akr7a3, Mgst2, Entpd5, Gstm1,4, Gsta3, Ephx1, Gsr, Gclm, Abcc2&3 Glutathione metabolic process (9, 7)
7m/8 Ala Psma1,2,4-7, Psmb1-8, Psmc1-6, Psmd1-4,6,7,11-13, Usp5, Ube4b, Ufd1l, Ubqin2, Proteasome complex (37, 37)
Sgstm1
Mitosis 10 Clc Aurka&b, Bub1, Cdk1, Ccna2, KIf1, Mki67, Rad51 Cell cycle (31.9, 58), mitotic cell cycle process (29, 42)
37m Cl.c Mcm2,3,4&7, Chek1, Pold, Rfc2, Cdk2, Pcna, Tubg1, DNA metabolic process (16, 23), DNA replication (15, 15)
Necrosis 18m Clla  Ccl4, Ccl2, Cxcl16, Cd63, Cd300a, Grn, Lgals3, Lgmn, Vim, Spp1 Cell adhesion (6, 18), leukocyte cell-cell adhesion (6, 10)
2m Ela C1qa,b&c, Cd53, Cd68, Csf1r, Cyba&b, Fcer1a&g, Hdf, ll1b, 112r, 1118 Icam2, Lcp1, Ncf4, Immune system process (30, 96), leukocyte activation
Rac2, Tgfb1 (22, 45)
55m Clla ibid. biliary hyperplasia ibid.
Single-cell necrosis (apoptosis) 70 Cll.b  Btg3, Ddit3, Gadd45a, Maff, Mafk, Pvr, Rassf1, Tnfsr12a, Cell cycle arrest (3, 3)
29 B.l.a Fos, Jun, Junb, Atf3, Egr1, Myc, Nr4al, Dusp1,5&6 Response to chemical® (8,25), MAPK signaling pathway

(7.9)°

Modules with more than 20 genes were selected as representative based on the rank from Supplementary Table S5 (concurrent). Module 7m and 39 are included since they were top-ranked module for
prediction of hypertrophy and biliary hyperplasia, respectively, at 1 day and are important for other analyses. Representative genes are hub genes or genes contributing to enrichment in the representative
annotation terms with the P-value (hypergeometric test) and number of genes contributing that term in parentheses ? For brevity P-values are shown as — 1 x log10(P-value) rounded to the nearest integer, that
is, P-value=0.01 shown as 2, 0.001 shown as 3, Te—10 shown as 10 and so on. Pathway annotation is included when it was descriptive of the module and had a better enrichment P-value than the
corresponding GO term. PKEGG. “REACTOME. Module details are from Supplementary Table S2. A similar summary for all modules mentioned in the text is in Supplementary Table S3.
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Figure 3. Comparison of module scores for tunicamycin and ethionamide in rat liver. Eigengene scores (module expression) for; (a)
tunicamycin 300 ug kg™' at 9 h (single dose), (b) ethionamide, 100 mgkg™' at 6 h (single dose), (c) correlation of module scores for
tunicamycin and ethionamide, (d) primary rat hepatocytes were treated with either ethionamide or tunicamycin for 24 h, and immunoblots
were run on the cell lysates as indicated. Functional assignments of labeled modules are discussed in Results and summarized in

Supplementary Table S3.

(Col1al, Col1a2, Fbn1).2** Two interesting novel genes had
strong association (concurrent) with BDH and lower induction by
CCl, (which causes fibrosis without BDH) relative to BDH-inducing
treatments (Supplementary Figure S5): Tspan8 (rank 1 genome-
wide, p-adj=2e-35, effect size=4.6) and Sox4 (rank 10, p-
adj=1e - 27; effect size =3.0; Supplementary Table S8). Tspan8 is
overexpressed and prognostic of survival in several cancers,***°
regulates cell adhesion and promotes migration.*’ It has measur-
able protein expression in normal human biliary epithelial cells,*®
and was identified in GWAS studies for type 2 diabetes.***° Sox4 is
a member of the SRY-related HMG-box family of transcription
factors expressed in human hepatocytes*® and is required for
biliary tract development in mice.®' It is overexpressed in and
prognostic of several cancers, including cholangiocarcinoma and
hepatocellular carcinoma.>*** These genes are worthy of further
investigation given the relative paucity of the literature implicat-
ing them in BDH in comparison to other well-studied genes in the
module, such as Krt19.

Upstream signals couple co-expression to toxicity phenotypes

To gain insight into how upstream signals couple hepatocellular
injury to activation or repression of co-expression modules, we

The Pharmacogenomics Journal (2018), 377-390

identified putative transcription factors (TFs) regulating module
induction or repression using the bile duct ligation model and
literature annotation of TF versus target gene pairs
(Supplementary Table S10). Four factors were enriched among a
plurality of induced (cJun and Sp1) and repressed modules (Hnf1a
and Fxr). Jun, associated with immediate early response module
29, and Jun kinase (JNK) play important roles in liver
pathogenesis.>’** Fxr and Hnfla are implicated broadly in
cholestatic liver injury.>>™% Reports that Sp1 plays a role in liver
injury are more anecdotal.”*®’

To confirm the role of these four factors, we performed ChIP-seq
on liver samples 1 and 14 days after ligation. Increased Jun
binding occurred at both time points. Binding for other factors
increased at 1 day and decreased at 14 days (Table 2). Of 33
module-TF associations predicted for these four factors, we
validated 27 by ChIP-seq. In addition, we identified 111 additional
module-TF associations. In total, 76 modules were enriched in
target genes for any of the four factors, with 45 enriched for two
or more factors (that is, possible multi-factor associations;
Supplementary Table S12); 49 of the modules had ranks <20 in
association with BDH or necrosis.

We also examined the extent to which progression of injury and
changes in module expression aligned with changes in TF binding.
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Figure 4. Liver pathogenesis and transcriptional control after bile duct ligation. Liver pathology and modular transcriptomic analysis were
compared to time-matched sham surgical animals from 3 h to 14 days after bile duct ligation. (a) Percent change from levels in sham animals
for select clinical chemistry endpoints, (b) severity scores for histology findings in ligated animals and (c) scores for selected modules in
ligated versus sham animals. Scores for all modules on the TXG-MAP at 1 day (d) and 14 days (e). Livers from animals ligated for 1 and 14 days
were further analyzed using ChIP-seq on four transcription factors, and enrichment of genes showing increased or decreased binding in bile
duct ligation versus sham calculated for each module (f); modules are ordered by branch and only modules containing 20 or more genes are
shown for improved clarity. For ChIP, a signed hypergeometric P-value is calculated for each module—factor pair, reflecting enrichment of
differentially bound genes. Module eigengene (EG) and signed log10 hypergeometric TF-binding enrichment are scaled for each color to the
maximum absolute module response at 1 or 14 days; 1 unit on the ordinate corresponds to the maximum response for a given color.
Maximum response: 1 day=3.0 (module EG) and 8.3 (Jun), 2.3 (Sp1), 7.2 (FXR) and 3.8 (HNF1), 14 day =5.5 (module EG) and 20.1 (Jun), 5.9
(Sp1), 12.8 (FXR) and 12.7 (NHF1). Some module locations for enriched module in f are indicated in e, a complete list of module branch
locations can be found in Supplementary Table S2. ALT, alanine aminotransferase.

Modules in branches of the TXG-MAP showing strong association related to cell cycle, ribosomal biogenesis and related functions,
with BDH, for example, C.ll.a (55m and 18m) and C.ll.e (69 and 88), where other factors are predicted to regulate expression
were characterized by strong induction (Figures 4d and e) and (Supplementary Table S2).

increased concomitant binding upon ligation by three or four

of the factors at 1 day (Figure 4f). At 14 days, expression and

cJun/HNF1 binding for modules 2/2m (immune systems process), Module-based molecular phenotypes translate to human liver

55m (membrane raft assembly) and 18m (leukocyte adhesion) diseas.,e . . . .
overlapped strongly. Conversely, repression in Ellb region ~ BDH is both a common findings and an important h|5t2|90398|C3|
(modules relevant to liver-specific function, Supplementary Table determinant of liver pathogenesis in rodent and human.”>>° To

S3) overlapped with diminished binding by all but cJun, identify molecular phenotypes for BDH, we first performed
suggesting coordinated regulation of expression. Regions hierarchical clustering using module scores for 57 rat liver
characterized by strong expression but devoid of binding for treatments that caused BDH, and identified four distinct clusters
the four factors, for example, C.l at 1 day, consisted of modules (Figure 5). Bile duct ligation samples segregated across three
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Table 2. Number of genes showing differential ChIP-seq binding and
expression changes comparing ligated and sham animals

Factor Time More binding in BDL Less binding in BDL
cJun 1 593 0
cJun 14 924 8
FXR 1 266 0
FXR 14 13 819
HNF1 1 206 0
HNF1 14 300 414
Sp1 1 97 1
Sp1 14 33 297

Genes showing increased binding in bile duct ligation (BDL) or sham were
identified using a window around each gene from 10kb upstream to 1kb
downstream of the transcription start site. In addition, we required
evidence of functional binding via expression change (1.5-fold increased or
decreased expression with P-value < 0.05); see Methods for identification
of genes showing differential binding using ChiP-seq. Similar results are
observed for alternate methods of defining factor-bound genes
(Supplementary Table S11).

clusters, based on time after ligation, and were labeled accord-
ingly. One cluster (sub-acute BDH) had lower module perturba-
tion. Notably, two of three treatments in the sub-acute cluster
exhibited hyperplasia at 4-8 days that resolved at the later time
points (2 mg kg ™' lomustine, 30 mg kg ™' 4-MDA, Supplementary
Table S1). The fourth cluster contained only BDH-inducing
carcinogens such as 2-acetylaminofluorene and methapyrilene.
Recursive partitioning identified the modules most responsible for
grouping experiments into clusters. Notably, modules 8 (protea-
some), 15m (mitochondrial biogenesis) and 37m (cell cycle) were
induced by BDH-causing carcinogens; module 39 (extracellular
matrix) and 2m (inflammation) correlated with progression to
fibrosis and differentiated acute from chronic BDH while module
55m distinguished sub-acute BDH from other clusters. Modules
13m (complement cascade) and 23 (secreted proteins, for
example, Alb, Apoe, Apoh, Fgg and mitochondrial coded genes;
Supplementary Table S3) were more strongly repressed in chronic
BDH and carcinogen clusters. Thus, module associations identified
molecular subtyping of BDH linked to specific biological mechan-
isms useful for differentiating disease etiology and progression.

Compared to gene-level analysis, modules improved the
correlation for expression changes across species.'” Therefore, it
was of particular interest to determine if module-based molecular
phenotypes identified in rat translate to human liver. Although
transcriptomic data are not available for drug-induced liver injury
in human, data are available for diseases that share etiology with
drug-induced liver injury in rodents, such as cholestasis, lipid
accumulation (steatosis) and inflammation/fibrosis. The latter
includes a spectrum of diseases that may or may not progress
to liver failure, including alcoholic liver disease (ALD), non-
alcoholic steatohepatitis (NASH), and hepatitis B and C infection.
Therefore, we evaluated liver expression data from the GEO for
normal and disease samples including: type 2 diabetes, non-
alcoholic fatty liver (NAFL also termed steatosis) and NASH, ALD,
biliary atresia (BA; a congenital cholestatic condition in infants),
hepatitis B infection-mediated acute liver failure, hepatitis C
infection-mediated cirrhosis, hepatocellular carcinoma (HCC) and
hepatoblastoma.

We assessed the similarity of module scores for human liver
diseases compared to rat liver toxicity phenotypes
(Supplementary Table S13). Module responses in liver tissue from
patients with non-alcoholic fatty liver (NAFL) or type 2 diabetes
had low similarity to all rat liver treatments. However, module
responses in BA, ALD, NASH, acute liver failure and cirrhotic liver
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all tended to resemble rat liver treatments causing bile duct
hyperplasia accompanied by co-occurring fibrosis and/or necrosis.
Among all treatments, bile duct ligation most closely mimicked
biliary atresia. Bile duct ligation combined with methionine-
choline deficient diet and lipopolysaccharide treatment more
closely mimicked NASH (Supplementary Table S14). Of interest,
other common rodent NASH models, such as the CCl4-liver injury
model and diet-induced models (for example, high cholesterol,
high fructose and high fat), show lower concordance with human
disease (Supplementary Table S14).

Since the molecular profile of human BA, ALD and NASH
generally resembled rat treatments resulting in BDH, we evaluated
the modules that defined the rat BDH subtypes in human liver
disease, both in terms of their magnitude of change compared to
normal human liver (Figure 6), and relative rank across the 415
rodent modules (Supplementary Table S15). In particular, module
37m was strongly induced and ranked in >97th percentile
(100 =most induced) across HCC etiologies and hepatoblastoma;
strongest induction of 37m in rat was for BDH carcinogens and
ranked 4th in association with the increased mitosis across all liver
treatments (Supplementary Table S3). Module 39 was most
induced in NASH, ALD, BA, acute liver failure and cirrhosis. Module
2m was induced in all diseases except HCC, consistent with the
immunological suppression to evade cell death in cancer.®?
Modules 13m (complement activation) and 23 (very-low-density
lipoprotein) were downregulated in all states, most substantially in
cirrhosis, acute liver failure and HCC. In summary, modules most
significantly perturbed in rat BDH show similar effects in human
liver disease, supporting translational utility. Further, when
applying the two-stage approach for disease gene identification
(analyzing module versus phenotype relations first, then examin-
ing their constituent genes), several genes implicated in liver
fibrosis were identified (Figure 7 and Supplementary Results).

DISCUSSION

Use of toxicogenomics in drug safety assessment has expanded in
the last decade, driven in part by improvements and standardiza-
tion of measurement technology.®*®> However, inclusion of
genomic studies in formal drug safety assessment remains
limited,%® with relatively few reports describing significant insights
from expression profiling that complement traditional nonclinical
studies.®”°® This may be due in part to a focus on gene signatures
as chemical classifiers and a poor understanding of how selected
genes from case-by-case analyses fit into the larger context of
organ injury. We reasoned that co-expression is a ‘coalescent
property’® of liver and might order gene expression data into
biologically relevant networks of interacting elements extensible
to other species. To test this hypothesis, we developed the TXG-
MAP approach, an integrated analysis and visualization frame-
work, using a large corpus of transcriptomic and pathology data.
Central to our approach was the use of co-expression network
analysis to identify genes behaving similarly across hundreds of
drug perturbations to reduce the dimensionality of transcriptomic
data and to facilitate visual interpretation of results. We illustrated
the utility of the approach to identify mechanisms of pathogenesis
and demonstrated translation from nonclinical models to human,
two central questions in drug safety assessment.

Summarizing expression changes using co-expression modules
addresses a significant challenge in toxicogenomics: the challenge
of ‘large p, small n’ that arises when analyzing phenotypic
outcomes for a few hundred treatments (typically with few
positive class examples) with thousands of genes.'® We illustrated
the utility of a two-stage approach, whereby modules are first
linked to a phenotype followed by gene-level analysis performed
within significant modules to identify constituent genes that
underpin the modular behavior and association with the
phenotype. Compared to gene-level analysis alone, this approach
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Figure 5. Molecular subtypes of BDH. Hierarchical clustering of 57 treatments from TG causing BDH in rats, using 415 co-expression modules,
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! and days of dosing indicated on rows; four distinct subtypes were identified from the dendrogram. The

heatmap on the left shows a subset of modules selected with recursive partitioning that recapitulate the (all-module) clustering and severity
of liver histology findings. Abbreviations are bile duct ligation (BDL), 4,4’ methylenedianiline (MDA), 1-naphthyl isothiocyanate (ANIT),
2-acetylaminofluorene (2AAF), N-nitrosodiethylamine (DEN). The heat map on the right shows the histopathology scores for the same

treatments.
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Figure 6. Comparison of BDH molecular subtypes in rats versus human liver disease. Module scores are averaged across treatments in each
BDH subtype (rats) from Figure 5 (top heatmap) and human samples (bottom heatmap) available in each Gene Expression Omnibus (GEO)
series, identified via their accession number.
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Figure 7. Analysis of modules and genes in human NASH. Distinguishing liver samples from patients with non-alcoholic steatohepatitis

(NASH) versus those with normal liver or non-alcoholic fatty liver (NAFL). (a) Waterfall plot showing the significance of individual genes in
distinguishing NASH from non-NASH samples in two GEO series, indicating whether genes are pre-selected by membership of key rat bile
duct hyperplasia (BDH)-associated modules. The nine rat modules used for preselection contain 15 or more genes, have abs(coef) >1.09
(odds ratio of 3) from logistic regression and g-adj < 0.01 for both prediction of rat BDH at 1 day and concurrent with BDH. The waterfall plot
includes 560 genes with P-value (non-adj) <0.05 for GSE48452 (NASH versus pooled NAFL/obese) and GSE49541 (NASH versus NAFL).
lllustrating application of module 39 (b) and 88 (c) in distinguishing human liver samples, with number of samples indicated in parentheses.
Comparing the performance of the best individual genes within module 88 selected in GSE48452 (d; KRT8) and GSE49541 (e; TPM1), showing
that the individual genes perform notably worse than the module in the data set not used for its selection. All P-values shown in b-e are from

t-tests assuming unequal variance.

identified ~ 6-fold more genes predictive of the later occurrence of
bile duct hyperplasia using expression at 1 day. Several genes
implicated in BDH by the literature that fail to reach genome-wide
significance (g-value > 0.05) were successfully identified using this
approach (for example, Epcam, Pdgfrb).?°

Consistent with the observations by Foster et a we
highlighted the strong association between avgAbsEG, a measure
of overall transcriptional effect,)! and adverse phenotypes, for
example, necrosis, single-cell necrosis (apoptosis) and BDH.
Treating avgAbsEG as a covariate allowed us to identify groups
of module—phenotype relationships on the TXG-MAP that
uniquely associate with distinct histology findings, both con-
current (induced concurrent with the lesion) and as predictors of
toxicity (for example, induced prior to the lesion). This distinction
is important, as models that ‘predict’ injury when the lesion is
visible, without providing mechanistic information, are of little
practical utility if histology assessment is conducted in parallel.
Notably, we identified modules most predictive of toxicity
phenotypes in areas of the TXG-MAP having little overlap with
canonical pathways. Moreover, pathways and gene ontology did
not perform as well as modules when expression data from
studies of 1- or 4-day duration were used to predict for adverse
outcomes in 29-day studies, study durations required for entering

1,%°
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phase | studies in humans.® Notably, adding expression-derived
features (using modules or genes), to 1-day studies was sufficient
to predict adverse outcomes in 29-day studies, suggesting it may
be feasible to incorporate safety endpoints into standard 1-day
toxicokinetic studies.

The pathogenesis of cholestatic liver disease and biliary tract
injury involves complex interactions among cholangiocytes,
hepatocytes, stellate cells and other non-parenchymal cells and
lymphocytes. Expression changes observed in whole liver tissue
reflect changes in the baseline state of all underlying cells
responding to injury (for example, upregulation of detoxifying
enzymes in hepatocytes; activation of stellate cells), cell prolifera-
tion and trans-differentiation across cell types (for example, the
ductular reaction’®). We demonstrated similar histology and
module response for bile duct ligation and compound-induced
BDH or fibrosis involving these cell types and identified known as
well as potential marker genes useful in the study of these toxicity
phenotypes.

We also identified upstream transcription factors (TF) associated
with modules changes by validating literature-based prediction of
TF-target gene pairs with ChiP-seq analysis for four factors, cJun,
Sp1, FXR and HNF1 following 1 and 14 days of bile duct ligation.
cJun binding was enriched in the ClI branch, an area rich in



modules associated with toxicity phenotypes. Notably, cJun and
its upstream kinase Jnk are implicated in liver disease
pathogenesis.>* Approximately 50% of C.l modules significantly
associated with adverse pathology have constituent genes with
increased cJun binding at one or both time points. Although GO
and pathway enrichment was lower across C.I, enriched terms
were related to actin cytoskeletal and cell-cell contact, suggesting
perturbation of these components may be important early
predictors of hepatocellular injury.

The development of biomarkers of altered liver function and
progression of liver disease is critical.”’ However, establishing the
relevance of insights obtained from transcriptomic analysis in
preclinical species is challenging due to the paucity of human liver
data. Analyses based on conservation of biological properties
(coalescent properties) across species, including co-expression
modules, seemed a tractable approach that avoids the impracti-
cality of sampling human subjects before and after drug
administration. Key modules associated with drug-induced BDH
(and fibrosis) in rats were highly perturbed for several human
diseases with similar etiology. Further, using rat-derived
co-expression networks, we identified known and putative gene
markers diagnostic for human liver disease that would be missed
in false discovery rate-controlled genome-wide analysis.

In summary, we developed the TXG-MAP, a network-based
visualization framework for analyzing transcriptomic data. This
approach allows new experiments to be interpreted in a
physiologically relevant context and exemplify translation to
human disease. We suggest that this approach offers significant
advantages in human risk assessment for drug candidates.
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