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Accurate and timely detection of recombinant lineages is crucial for interpreting
genetic variation, reconstructing epidemic spread, identifying selection and variants
of interest, and accurately performing phylogenetic analyses' . During the SARS-
CoV-2 pandemic, genomic data generation has exceeded the capacities of existing
analysis platforms, thereby crippling real-time analysis of viral evolution®. Here,

we use a new phylogenomic method to search anearly comprehensive SARS-CoV-2
phylogeny for recombinant lineages. In a1.6 million sample tree from May 2021,

we identify 589 recombination events, which indicate that around 2.7% of sequenced
SARS-CoV-2 genomes have detectable recombinant ancestry. Recombination
breakpoints areinferred to occur disproportionately in the 3' portion of the genome
that contains the spike protein. Our results highlight the need for timely analyses of
recombination for pinpointing the emergence of recombinant lineages with the
potential to increase transmissibility or virulence of the virus. We anticipate that this

approach will empower comprehensive real-time tracking of viral recombination
during the SARS-CoV-2 pandemic and beyond.

Recombination is a primary contributor of new genetic variationin
many prevalent pathogens, including betacoronaviruses®, the clade that
includes SARS-CoV-2. By mixing genetic material from diverse genomes,
recombination can produce new combinations of mutations that have
potentiallyimportant phenotypic effects’. For example, recombination
isthoughtto have played animportant roleinthe recent evolutionary
histories of Middle East respiratory syndrome®and severe acute respira-
tory syndrome coronavirus (SARS-CoV)® 2, Recombination might also
have the potential to generate viruses with zoonotic potential in the
future®. Therefore, accurate and timely characterization of recombina-
tion is foundational for understanding the evolutionary biology and
infectious potential of established and emerging pathogens in human,
agricultural and natural populations.

Now that substantial genetic diversity is present across SARS-CoV-2
populations™ and co-infection with different SARS-CoV-2 variants has
been known to sometimes occur®, recombination is expected to be
an important source of new genetic variation during the pandemic.
Whether or not there is a detectable signal for recombination events
in the SARS-CoV-2 genomes has been fiercely debated since the early
days of the pandemic®. Nonetheless, several apparently genuine
recombinant lineages have been identified using ad hoc approaches'
and semi-automated methods that cope with vast SARS-CoV-2 data-
sets by reducing the search space for possible pairs of recombinant
ancestors'®”. Because of the importance of timely and accurate surveil-
lance of viral genetic variation during the continuing SARS-CoV-2 pan-
demic, new approachesfor detecting and characterizing recombinant

haplotypes are needed to evaluate new variant genome sequences as
quickly as they become available. Such rapid turnaround is essential
for driving an informed and coordinated public health response to
new SARS-CoV-2 variants.

We developed a new method for detecting recombination in
pandemic-scale phylogenies, Recombination Inference using Phylo-
genetic PLacEmentS (RIPPLES, Fig.1). Because recombination violates
the central assumption of many phylogenetic methods, that is, that a
single evolutionary history is shared across the genome, recombinant
lineages arising from diverse genomes will often be found on ‘long
branches’, whichresult fromaccommodating the divergent evolution-
ary histories of the two parental haplotypes (Fig. 1). Note that as long
as recombination is relatively uncommon, phylogenetic inference is
expected to remain accurate even when branch lengths are artifactu-
ally expanded™. RIPPLES exploits that signal by first identifying long
branches onacomprehensive SARS-CoV-2 mutation-annotated tree'*?°,
RIPPLES then exhaustively breaks the potential recombinant sequence
intodistinct segments and replaces each onto a global phylogeny using
maximum parsimony. RIPPLES reports the two parental nodes—here-
after termed donor and acceptor—that resultin the highest parsimony
score improvement relative to the original placement on the global
phylogeny (Supplementary Text1). Our approach therefore leverages
phylogenetic signals for each parental lineage and the spatial correla-
tion of markers along the genome. We establish significance using a
null model conditioned on the inferred site-specific rates of de novo
mutation (Supplementary Texts2 and 3).
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Fig.1|RIPPLES exhaustively searches for optimal parsimony improvements
using partialinterval placements. a, A phylogeny with six internalnodes
(labelled a-f),inwhich nodef (inbold)is the one being investigated as a putative
recombinant. Theinitial parsimony score of node fis 4, according to the multiple
sequence alignment below the phylogeny, which shows the variationamong
samplesandinternalnodes. Note thatinternal nodes may not have corresponding
sequencesinreality but test for recombination using reconstructed ancestral
genomes.b-d, Three partial placements of the twointervals (grey cellsindicate
sites outside the interval) resulting from the breakpoints after site 5 (panelb),

9 (panel c) and 12 (panel d) respectively, along with their resulting parsimony
scores. The dashed linesindicate the new branches resulting from the partial
placements of f. Arrows mark sites thatincrease the sum parsimony of the two
partial placements of f. The optimal partial placement and breakpoint prediction
fornodefisinthe centre (c), with one breakpoint after site 9 and with partial
placementsbothasasiblingof node cand asadescendantof noded.

Substantial testing via simulationindicates that RIPPLES is efficient,
sensitive and can confidently identify recombinant lineages (Supple-
mentary Texts 4-6). As expected”, when recombination occurs towards
the edges of the genome or between genetically similar sequences, itis
harder to detect using RIPPLES (Extended Data Figs.1and 2). Nonethe-
less, RIPPLES detects simulated recombinants with 75.8% sensitivity.
Amongthe simulated samples detected as recombinants, RIPPLES accu-
rately identifies 90% of simulated breakpoints (Extended Data Table 1
and Supplementary Text 6). Furthermore, RIPPLES is able to detect
all highly confident recombinants identified in a previous analysis'
(Supplementary Text 6). Recombination analysis using RIPPLES on a
global phylogeny of about 1.6 million SARS-CoV-2 genomes shows that
afraction of the sequenced SARS-CoV-2 genomes belongs to detect-
able recombinant lineages. To mitigate theimpacts of sequencing and
assembly errors, we exclude all nodes with only a single descendant,
we applied conservativefilters to remove potentially spurious samples
from the recombinant sets flagged by RIPPLES, and we manually con-
firmed mutations in a subset of putative recombinant samples using
raw sequence read data (Supplementary Texts 7 and 8, Extended Data
Table 2 and Extended Data Fig. 3). After this, we retained 589 unique
recombination events, which have acombined total of 43,104 descend-
ant samples (Supplementary Table 1). This means that around 2.7% of
total sampled SARS-CoV-2 genomes areinferred tobelong to detectable
recombinant lineages. Post hoc statistical analysis yields an empiri-
cal false discovery rate estimate of 11% for our statistical thresholds
(Supplementary Text 9 and Extended Data Table 3). Additionally,
excess similarity of geographic location and date metadata among
the descendants of donor and acceptor nodes supports the notion
that many ancestors of recombinant genomes co-circulated within
human populations (Supplementary Texts 10 and 11 and Extended

DataFigs.4 and 5). Because recombination events that occur between
genetically similar viral lineages are challenging to detect (Extended
Data Fig. 2), ours is expected to be a potentially large underestimate
of the overall frequency of recombination. As a result, the RIPPLES
estimateis probably conservative with respect to the global frequency
of recombination in the SARS-CoV-2 population.

RIPPLES uncovered astrikingly non-uniformdistribution of recombina-
tionbreakpoint positions across the SARS-CoV-2genome, consistent with
previous analysesinbetacoronaviruses'™?. In particular,among putative
recombination events there is an excess of recombination breakpoints
towards the 3' end of the SARS-CoV-2 genome relative to expectations
on the basis of random breakpoint positions (P<1x107; permutation
test; Supplementary Text12). Notably, no suchbiasis apparent whenwe
simulate recombination breakpoints following a uniform distribution
(Supplementary Text13 and Extended Data Fig.1). Change-point analysis
identifies an increase in the frequency of recombination breakpoints
immediately 5' of the spike protein region (20,875 base pairs; Supple-
mentary Text 14), and this pattern is consistent when restricting our-
selves to putative nodes with the largest numbers of descendants and
amongdiverse datasources, further suggesting thatitis not artefactual
(Supplementary Text15and Extended Data Table 4). The rate of putative
recombination breakpointsis about three times higher towards the 3' of
the change pointthanthe 5'interval (Fig. 2), whichis similarto therelative
recombination rates in the genomes of other human coronaviruses™.

Several lines of evidence suggest that the skewed distribution of
recombination breakpoint positions is not a consequence of positive
selection atthe level of between-host transmission dynamics. First, many
oftheserecombinant clades have existed forarelatively short period of
time, and might already be extinct. The mean timespan between the earli-
estand latest dates of observed descendants of detected recombinant
nodes is just 37 days. Second, of the subset of recombination events
that we inferred to occur between variants of concern (VOC; lineages
B.1.1.7,B.1.351, B.1.617.2 and P.1 (ref. )) and other lineages, VOCs con-
tribute slightly fewer spike protein mutations than non-VOC lineages
onaverage (60 out of 125 VOC/non-VOC recombinants, P= 0.48, sign
test). Third, recombinant clade size does not greatly differ from the
remaining clade sizes, which would be expected if recombinant lineages
experienced strongselection (P = 0.8470, permutation test). Therefore,
although natural selection on between-host transmission dynamics of
recombinant lineages could also impact the observed distribution of
recombinantbreakpoint positions", our dataindicates that other biases
shape the distribution of recombination events across the SARS-CoV-2
genome. These could include a neutral mechanistic bias affecting the
distribution of recombination breakpoints.

Although not yet widespread among circulating SARS-CoV-2
genomes, recombination has measurably contributed to the genetic
diversity in SARS-CoV-2 lineages. The ratio of variable positions con-
tributed by recombination (R) versus those resulting from de novo
mutation (M), R/M,is commonly used to summarize the relative impacts
of these two sources of variation??. Using our dataset of putative recom-
bination events, we estimate that R/M = 0.00264 in SARS-CoV-2 (Sup-
plementary Text 16). This is low for a coronavirus population (for
example, for Middle East respiratory syndrome, R/M is estimated to
be 0.25-0.31 (ref. ??)), which presumably reflects the extremely low
genetic diversity among possible recombinant ancestors during the
earliest phases of the pandemic and the conservative nature of our
approach. As SARS-CoV-2 populations accumulate genetic diversity
and co-infect hosts with other species of viruses, recombination will
playanincreasingly large role in generating functional genetic diversity
and this ratio could increase?. RIPPLES is therefore poised to play a
primary role in detecting new recombinant lineages and quantifying
theirimpacts on viral genomic diversity as the pandemic progresses.

Our extensively optimized implementation of RIPPLES allows it to
search the entire phylogenetic tree and detect recombination both
within and between SARS-CoV-2 lineages without a priori defining a
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Fig.2 | RIPPLES detects an excess ofrecombinationin the spike protein chromosome edges probably reflects adetection bias, which we describe
region. a, Thedistribution of midpoints ofeach breakpoint’s prediction above (Extended DataFig. 2). b-d, Recombination-informative sites (thatis,
interval areshownas adensity plot, with the underlying recombination positions where the recombinant node matches either but not both parent
predictionintervals plotted asindividuallinesin grey. We used the midpointof ~ nodes) for three example recombinant trios detected by RIPPLES. The numbers
thebreakpoint predictioninterval because recombination events canonly be totheleft of each sequence correspond to the nodeidentifiers fromour MAT.
localized to predictionintervals, which are theregions between two banddare examplesofarecombinant withasingle breakpoint (shown with
recombination-informative SNPs. A dashed vertical line at position 20,875 dottedlines), cis an example of arecombinant with two breakpoints.b-d were
delimits recombination rate regions identified by change-point analysis generated using the SNIPIT package (https://github.com/aineniamh/snipit).

(Supplementary Text15). The apparent lack of recombination towards the

set of lineages or clade-defining mutations. This is a key advantage  within and among human hosts. Our discovery of both the excess of
of our approach relative to other methods that cope with the scaleof = recombination events specifically around the spike protein and the
SARS-CoV-2 datasets by reducing the search space for possiblerecombi-  relatively high levels of recombinantsincirculationat present underline
nation events (for example, refs.'®”%), RIPPLES discovers 223 recombina-  theimportance of monitoring the evolution of new viral lineages that
tion events within branches of the same Pango lineages. Ourresultsalso  arise through mutation or recombination through real-time analyses
include 366 interlineage recombination events (Supplementary Table1).  of viralgenomes. Our work also emphasizes the impact that explicitly
Additionally, we find evidence that recombination has influenced the  considering phylogenetic networks will have for accurate interpreta-
Pangolin SARS-CoV-2 nomenclature system®. Specifically, we discover  tion of SARS-CoV-2 sequences™.
thattheroot of the B.1.355 lineage might have resulted fromarecombina- Beyond SARS-CoV-2, recombination is a major evolutionary force
tion event between nodes belonging to the B.1.595and B.1.371lineages  driving viral and microbial adaptation. It can drive the spread of anti-
(Fig.3and Supplementary Table1). These diverse recombinationevents  bioticresistance’, drugresistance’, and immunity and vaccine escape?.
highlight the versatility and strengths of the approach takeninRIPPLES.  Identification of recombinationis an essential component of pathogen
The detection of increased recombination ratesin the 3' portionof  evolutionary analyses pipelines as recombination can affect the quality
the SARS-CoV-2 genome, which contains the spike protein, highlights  of phylogenetic, transmission and phylodynamic inference®. For these
theutility of continuing surveillance. The spike proteinisaprimaryloca-  reasons,computational tools to detect microbial recombination have
tion of functional novelty for viral lineages as they adapt to transmission  become very popular and importantin recent years*. The SARS-CoV-2
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Fig.3|RIPPLES uncovered evidence that the B.1.355lineage might have
resultedfromarecombinationeventbetweenlineagesof B.1.595and B.1.371.
a, Sub-phylogeny consisting of all 78 B.1.355 samples (purple) and the most closely
related 78 samples tonodes 94,353 and 102,299 fromlineages B.1.371and B.1.595,
respectively, using the ‘k nearest samples’ functionin matUtils*. Nodes 94353
(red) and102299 (blue) are connected by dotted lines to node 94,354 (purple), the
root of lineage B.1.355. Recombination-informative mutations are marked where
they occurinthe phylogeny, withthose occurringinaparentbutnotshared by
therecombinantsequence showningrey.b, Recombination-informative sites
(thatis, siteswhere the recombinant node matches either but not both parent
nodes) areshown following the same formatas Fig. 2b-d. bwas generated using
the SNIPIT package (https://github.com/aineniamh/snipit).

pandemic has driven an unprecedented surge of pathogen genome
sequencing and data sharing, which has in turn highlighted some of
thelimitations of current software ininvestigating large genomic data-
sets®. RIPPLES was built for pandemic-scale datasets and is sufficiently
optimized to exhaustively search for recombinationin one of the larg-
est phylogenies ever inferred in 40 min (Supplementary Text 17). We
expect RIPPLES to perform best on densely sampled genomic datasets,
which will probably become the norm for many globally distributed
pathogens, but we caution that it has not yet been validated on other
species. To facilitate real-time analysis of recombination among tens
ofthousands of new SARS-CoV-2 sequences being generated by diverse
research groups worldwide each day?*8, RIPPLES provides an option
to evaluate evidence for recombination ancestryin any user-supplied
samples within minutes (Supplementary Text 17). RIPPLES therefore
opensthe door for rapid analysis of recombinationin heavily sampled
and rapidly evolving pathogen populations, and provides a tool for
real-time investigation of recombinants during a pandemic.
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Methods

RIPPLES uses the space-efficient data structure of mutation-annotated
trees (MATs)?, inwhich the branches of the phylogenetic tree are anno-
tated with mutations that have beeninferred to have occurred on them,
to identify recombination events. Figure Lillustrates the underlying
algorithm. RIPPLES identifies putative recombinant nodes containing
at least the number of mutations specified by the user and infers the
set of mutations that have occurred onits corresponding sequence
by accounting for all mutations annotated on the branches onits path
fromtheroot. RIPPLES then adds one or two breakpoints on mutation
sites and assesses parsimony score improvement using partial place-
ments compared to the starting parsimony. For more details, see Sup-
plementary Text 1. To determine whether putative recombinants were
significant, we developed a null model by selecting nodes at random
and adding k additional mutations drawn from the actual mutation
spectrain our global tree. We then placed these samples on the tree
and used RIPPLES to determine their parsimony score improvements
(Supplementary Text 2). For each putative recombinant in our global
tree, we compared its parsimony scoreimprovement to the distribution
of null parsimony scoreimprovements for the same initial parsimony
score (Supplementary Text 3). We developed our starting tree by first
taking the 28 May 2021 public tree'*°, masking all problematic sites?,
and pruning samples with fewer than 28,000 non-N nucleotides and
those with two or more non-[ACGTN-] nucleotides (Supplementary
Text 5). After this, we optimized this tree by running matOptimize
(Supplementary Text 4) twice, with a subtree pruning and regrafting
(SPR) radius of first 10 and then 40 in subsequent rounds and with
the masked Variant Call Format (VCF) file as an input. Instructions for
using RIPPLES are available at https://usher-wiki.readthedocs.io/en/
latest/tutorials.html. We ran RIPPLES on the n2d-highcpu-224 Google
Cloud Platform instance containing 224 virtual central processing
units (vCPUs) (Supplementary Text 18).

Totest the sensitivity of RIPPLES, we simulated recombinant samples
by choosing two random internal nodes from our phylogeny with at
least ten descendants and choosing breakpoints at random across the
genome. We generated 1,000 simulations each for one and two break-
point recombinants with no, one, two and three additional mutations
added to the sequence after the recombination event, using scripts
available at https://github.com/bpt26/recombination/. These combi-
nationsyielded 2,000 total simulated recombinant lineages. We then
measured the ability of RIPPLES to detect breakpoints as a function
of the position of the breakpoint and the minimum genetic distance
from the recombinant node to either parent (Supplementary Text 6;
genetic distance is estimated on the basis of the number of mutations
inferred to separate the focal samples, lineages or nodes). We also evalu-
ated the sensitivity of RIPPLES by ensuring that it detected each of the
high-confidence recombinant SARS-CoV-2 clusters of Jackson et al.*®.

We applied several post hoc filters to remove putative recombi-
nant nodes that may be false positives resulting from several possi-
ble sources of error. For each internal node from each trio (putative
recombinant, donor and acceptor nodes) that comprised a recombi-
nant event, we downloaded the consensus genome sequence for the
nearest descendants of each node from COG-UK, GenBank, GISAID
and the China National Center for Bioinformatics. We then aligned
the sequences of all descendants for each trio using MAFFT>°, focus-
ing specifically on recombination-informative sites, that is, where the
allele of the recombinant node matched one parent node but not the
other. If recombination-informative mutations were near to indels
or missing bases, or if the entire basis for recombination was a single
cluster of mutations in a20-nucleotide span (Supplementary Text 7).
We also confirmed sequence quality by manually examining raw reads
for ten samples in which we could confidently link the raw sequence
read data to a given consensus genome (Supplementary Text 8). To
estimate the false discovery rate (FDR) associated with our specific

approach and statistical threshold selected, we computed a post hoc
empirical FDR. We obtained the number of internal nodes that we tested
and that were associated with a given parsimony score. Then, for each
initial parsimony score and parsimony scoreimprovement, we obtained
the expected number of internal nodes that would show that parsi-
mony score improvement under the null model. Our FDR (Extended
Data Table 3) is the ratio of expected nodes for a given initial and final
parsimony score to the number of detected recombinant nodes with
the same initial and final parsimony score (Supplementary Text 9).

We also performed post hoc analysis using sample metadata to
determine whether the ancestors of the recombinant nodes had higher
spatial or temporal overlap than expected by chance. We computed
geographicoverlap as the joint probability of choosing asample from
the same country from the descendants of the donor and the acceptor
nodes. For temporal overlap, we recorded intervals from the earliest
to the most recent sample descended from the donor and acceptor,
respectively, and calculated the minimum number of days separating
thetwointervals (with O for overlappingintervals). We generated a null
distribution for both categories by selecting, for each detected trio,
tworandominternal nodes from the tree withanumber of descendants
equaltothereal donorand acceptor respectively. We then calculated
geographic and temporal overlap in the same way for this random set
(Extended Data Fig. 4 and Supplementary Text 10).

To determine whether identified recombination breakpoints are
significantly shifted towards the 3' end of the genome, we performed
apermutation test comparing the difference between the mean of
the distribution of uniformly simulated breakpoints and the mean of
the detected breakpoint position distributionin the true set (Supple-
mentary Text 12). We also conducted a change-point analysis using
the changepoint R package® and fit a Poisson model to the count of
recombination prediction interval midpoints. We then computed
the mean rate of recombination breakpoints within the intervals
on either side of the identified change point to estimate the fold
increase in recombination rate in the 3' portion of the genome
(Supplementary Text 13). To estimate R/M, we found the decrease
in parsimony score associated with each detected recombination
event as an estimate of R. We then calculated M by taking this value
and subtracting it from the total number of mutations observed
across our entire phylogeny (Supplementary Text 16). R/M is the
ratio of these values.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Alldataisavailablein the manuscript or the supplementary materials.
Dataset 1 (containing the phylogeny analysed for recombinationin this
study in Newick format) and dataset 2 (containing a list of descendant
samples of recombinant nodes identified through RIPPLES) are avail-
able at https://doi.org/10.5281/zenodo.6717378%.

Code availability

RIPPLES softwareis available under the MIT license as part of the UShER
package at https://github.com/yatisht/usher. We provide areproduc-
ible Google Cloud Platform workflow for RIPPLES under https://github.
com/yatisht/usher/tree/master/scripts/recombination. An archived
version of the specific code and workflow used in this study is avail-
able from https://doi.org/10.5281/zenodo.6709991(ref. **). We dis-
tribute RIPPLES with UShER because it uses the same underlying data
objectsand UShERis required toinfer theinput MAT. Documentation
for RIPPLES and associated utilities can be found at https://usher-wiki.
readthedocs.io/en/latest/.
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Extended DataFig.1|Histogram of inferred and simulated recombination
breakpoint positions. A) True simulated breakpoints (red) are shown with
alldetected recombinationinterval midpoints (blue). Where blue bars exceed
theheightofred, itimplies an excess rate of detectionrelative tothe true rate
of breakpoint positions. Likewise, where red bars exceed the height of blue,

Breakpoint Position (bp)

itimplies a deficit. B) True simulated breakpoints (red) are shown with
detected recombinationinterval midpoints for the 20% of the most closely
related donor-acceptor pairs (blue). Inboth comparisons, we broke ties
between equivalently improved partial phylogenetic placement parsimony
scores by selecting the largest recombinationintervals.



300!

200

03456789101112131415161718192021
C Minimum Starting Parsimony Score

22 23 24

l)34567B9101112131415161718192021

Minimum Starting Parsimony Score

22 23 27 32

Simulated Breakpoints Simulated Breakpoints

ST

5 6 7 8 9 101 12131415161718192021 222324252627282930
Minimum Genetic Distance To Parent

Now B
s & 9
s & &

Simulated Breakpoints Simulated Breakpoints

jmnmmlluuu.l..

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 222324252627282931 33
Minimum Genetic Distance To Parent

I [l Detected Breakpoint

[l Undetected Breakpoint

Extended DataFig.2 | RIPPLES more easily detects breakpoints causing
large changesin parsimony score. The distribution of simulated breakpoints
detected for each simulated sample is shown for each sample by A) initial
parsimony score and B) minimum genetic distance from simulated sample to
parent. Initial parsimony (A) is dependent upon the initial placement of the
recombinant nodeinthe tree and refers to the genetic distance in mutations
betweenthe recombinantnode andits direct parentin the phylogeny.
Minimum genetic distance from sample to parent (B) refers to the number of
mutations relevant to recombination that separate the recombinant node from
either the donor or the acceptor, and is not dependent on -theinitial phylogeny.

Similarly,among the simulated samples detected by RIPPLES, the detected and
undetected breakpoints are shown by C) initial parsimony score and D)
minimum genetic distance to parent. Detected samples and breakpoints are
showninblackand undetected samples and breakpoints are showninred.

We conditiononlocating the true breakpoints and observing asignificant
parsimony score according to our phylogenetic null model. Therefore, we
exclude recombination events with minimum starting parsimony scoresand
genetic distances of less than 3, asthese are not significant under our null
model.
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Donor: NNNNNNNNNNNNNNN--NNNNNNNNNNCTTCTATTTGTGCTTTTTAGCCTTTCTGCTCTTTCGATCTCTTATAGATTTCATCTAAACGAACAAACTAAAAT

/!\Recombinant: NNNNNNNNNNNNNNN--NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTTCGTGTTGTTTTAGATTTCATCTAAACGAACAAACTAAAAT

Acceptor: NNNNNNNNNNNNNNN--NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTTCGTGTTGTTTTAGATTTCATCTAAACGAACAAACTAAAAT

Recombinant: TAACTAAAAACAGTAAAGTACAAATAGGAGAGTACACCTTTGAAAAGGTGACTAATGGTGATGCTGTTGTTTACCGAGGTACAACAACTTACAAATTAAAT
Donor: TAACTAAAAACAGTAAAGTACAAATAGGAGAGTACACCTTTGAAAAGGTGACTAATGGTGATGCTGTTGTTTACCGAGGTACAACAACTTACAAATTAAAT
Acceptor: TAACTAAAAACAGTAAAGTACAAATAGGAGAGTACACCTTTGAAAAAGGTGACTATGGTGATGCTGTTGTTTACCGAGGTACAACAACTTACAAATTAAAT
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Extended DataFig. 3 | Examples of detected triosfiltered out due to
sequence quality concerns. A) Partial alignment of consensus sequences
fromafiltered recombinanttrio of nodes 77695,169585, and 77690, centred
onsite 28225, has consensus sequences of mostly 'N'spanning several sites
meantto beinformative of arecombination event. This can occur when many
descendantsamples have missing data. Mismatches between the three
consensus sequencesimmediately flanking this region may be the result of
poor sequencing quality as well. B) Partial alignment of consensus sequences

fromafiltered recombinant trio of nodes173213,173209, and 173274, centred
onsite16846, has 7 recombination-informative mutationsinan 8-nucleotide
window that are unlikely to be true mutation events, but rather an alignment
artifact oracomplexindel event. C) Partial alignment of consensus sequences
fromafiltered recombinanttrio of nodes293461,293460, and 211841, centred
onsite 29769, has 3 mismatchesina5-nucleotide window, immediately flanked
byalargegapinthealignmentand are unlikely to be true mutations.
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Extended DataFig.4|Recombinantancestors exhibitincreased spatialand temporal overlap. A) Spatialand B) temporal overlap for our recombinant trios
(inblue) and the null distribution (in gray), with Mann-Whitney Ranked-Sum p-values for the statistical increase in overlap for the recombinant ancestors shownonthe top.
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Extended DataFig. 5| Ancestors of recombinants are genetically similar.
A) Theinitial parsimony scores for placements of putative (red) and simulated
(blue) recombinantsamples. B) The genetic distance between inferred (red)
and simulated (blue) ancestor-donor pairs that gave rise to putative or
simulated recombinants.




Extended Data Table 1| Summary of simulated breakpoint detection

Simulation Type Detected Breakpoints Total Detectable Breakpoints Sensitivity
One Breakpoint, No Added Mutations 196 203 0.966
One Breakpoint, One Added Mutation 198 204 0.971
One Breakpoint, Two Added Mutations 168 179 0.939
One Breakpoint, Three Added Mutations 181 191 0.948
Two Breakpoints, No Added Mutations 343 384 0.893
Two Breakpoints, One Added Mutation 316 360 0.878
Two Breakpoints, Two Added Mutations 340 388 0.876
Two Breakpoints, Three Added Mutations 312 364 0.857
Total, One Breakpoint 743 Va4 0.956
Total, Two Breakpoints 1311 1496 0.876
Total 2054 2273 0.904

If a simulated recombinant had only statistically insignificant parsimony improvements, it is not included here as we consider this recombination event undetectable.
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Extended Data Table 2 | Raw sequence read datasets used
to confirm recombination informative positions in selected
recombinant samples

recombinant_node

55577
224689
45828
54010
357644
239616
22683
44547
88824
43018

Recombinant accession
ERR5860975
ERR5433158
ERR5409646
ERR5064277
ERR4671078
ERR5220136
ERR5965948
ERR5070101
ERR5677159
ERR5065119

Sample ID
EPI_ISL_722494
EPI_ISL_1180452
QEUH-121CC26
QEUH-A4D8D8
MILK-991B91
LOND-1323405
MILK-1580FB8
PHWC-490FD7
QEUH-144D8CC
QEUH-AAF133



Extended Data Table 3 | False discovery rate estimation for
each parsimony score improvement observed in our dataset

Country 3'/5' Rate Ratio P value
USA 2.94 <2.2e-16
England 24 0.0003944
India 2.65 6.81E-06
Turkey 1.99 0.02286
France 2.23 2.79E-05
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Extended Data Table 4 | Increased rate of breakpoint
interval midpoint in the 3' portion of the genome when the
recombinants are subdivided by the country of origin

Country 3'/5' Rate Ratio P value
USA 2.94 <2.2e-16
England 24 0.0003944
India 2.65 6.81E-06
Turkey 1.99 0.02286
France 2.23 2.79E-05
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Policy information about availability of computer code

Data collection  All data used in this work are available from GISAID (gisaid.org), COG-UK, and Genbank, with specific sample accessions listed in Supplemental
Tables 5-8.

Data analysis The data was analyzed using code available at https://github.com/yatisht/usher and https://github.com/bpt26/recombination. All software
versions are indicated where appropriate in the methods section of the manuscript.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
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- Accession codes, unique identifiers, or web links for publicly available datasets
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All data used in this work are available from GISAID (gisaid.org), COG-UK, and GenBank, with specific sample accessions listed in Supplemental Tables 5-8.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description In this study, we describe an efficient method that exhaustively searches a phylogeny with applications demonstrated for the current
SARS-CoV-2 global phylogeny. We compared our approach to many existing methods and documented accuracy (on simulated data),
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Research sample Our study is based on existing dataset of SARS-CoV-2 sequences shared via GISAID (gisaid.org), GenBank, and COG-UK. The specific
sample accessions are listed in Supplementary Tables 5-8.

Sampling strategy Not relevant. We chose to work primarily with our 28/5/21 public release of the SARS-CoV-2 phylogeny, because in order to develop
our software, we needed a constant tree to perform experiments on and these were the most up-to-date available at the time we
began this work. We also worked with simulated data, designed to behave similarly to the real data, as described in our Methods
section.

Data collection All sequences marked as ‘complete’ and ‘high coverage’ submitted up to 28/5/21 were downloaded from GISAID (gisaid.org), as well
as sequences from GenBank, and COG-UK, were used to build the global phylogeny after a few additional filtering steps (Methods).
These data are from a collection of sequences obtained throughout the world during the SARS-CoV-2 pandemic. Supplementary
Tables 5-8 list all individuals responsible for the primary data collection in all sequences used in this study.

Timing and spatial scale  All sequences present in the 28/5/2021 public tree were used, except for those pruned out according to our Methods section. We
chose 28/5/21 because we needed a consistent sample with which to hone our methods and conduct experiments, as well as to have
a "reference tree" to refer back to throughout the study.

Data exclusions Incomplete and low-coverage sequences as well as those with known sequence issues were excluded (Methods). Our previous study
and other related studies cited in the Methods demonstrate that errors can lead to false nucleotide substitutions for myriad reasons
unrelated to the biology of the virus itself. We have masked these sites from our analysis and the specific criteria for exclusion are

indicated in the method section.

Reproducibility All our findings and results are completely reproducible using the code and data available from https://github.com/yatisht/usher.
Simulations and filtration of sequences were conducted using code from https://github.com/bpt26/recombination.

Randomization Not relevant. We used identical dataset for all comparative analysis hence randomization is not necessary for comparing results of
the approaches used in this study.

Blinding Blinding is not relevant because experimenter bias cannot affect the results of this analysis.

Did the study involve field work? [ ]Yes — [X]No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
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