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Pandemic-scale phylogenomics reveals the 
SARS-CoV-2 recombination landscape

Yatish Turakhia1,2,3,8 ✉, Bryan Thornlow1,2,8, Angie Hinrichs2, Jakob McBroome1,2, 
Nicolas Ayala1,2, Cheng Ye3, Kyle Smith4, Nicola De Maio5, David Haussler1,2,6, Robert Lanfear7 & 
Russell Corbett-Detig1,2 ✉

Accurate and timely detection of recombinant lineages is crucial for interpreting 
genetic variation, reconstructing epidemic spread, identifying selection and variants 
of interest, and accurately performing phylogenetic analyses1–4. During the SARS- 
CoV-2 pandemic, genomic data generation has exceeded the capacities of existing 
analysis platforms, thereby crippling real-time analysis of viral evolution5. Here,  
we use a new phylogenomic method to search a nearly comprehensive SARS-CoV-2 
phylogeny for recombinant lineages. In a 1.6 million sample tree from May 2021,  
we identify 589 recombination events, which indicate that around 2.7% of sequenced 
SARS-CoV-2 genomes have detectable recombinant ancestry. Recombination 
breakpoints are inferred to occur disproportionately in the 3' portion of the genome 
that contains the spike protein. Our results highlight the need for timely analyses of 
recombination for pinpointing the emergence of recombinant lineages with the 
potential to increase transmissibility or virulence of the virus. We anticipate that this 
approach will empower comprehensive real-time tracking of viral recombination 
during the SARS-CoV-2 pandemic and beyond.

Recombination is a primary contributor of new genetic variation in 
many prevalent pathogens, including betacoronaviruses6, the clade that  
includes SARS-CoV-2. By mixing genetic material from diverse genomes, 
recombination can produce new combinations of mutations that have 
potentially important phenotypic effects7. For example, recombination 
is thought to have played an important role in the recent evolutionary 
histories of Middle East respiratory syndrome8and severe acute respira-
tory syndrome coronavirus (SARS-CoV)9–12. Recombination might also 
have the potential to generate viruses with zoonotic potential in the 
future13. Therefore, accurate and timely characterization of recombina-
tion is foundational for understanding the evolutionary biology and 
infectious potential of established and emerging pathogens in human, 
agricultural and natural populations.

Now that substantial genetic diversity is present across SARS-CoV-2 
populations14 and co-infection with different SARS-CoV-2 variants has 
been known to sometimes occur15, recombination is expected to be 
an important source of new genetic variation during the pandemic. 
Whether or not there is a detectable signal for recombination events 
in the SARS-CoV-2 genomes has been fiercely debated since the early 
days of the pandemic13. Nonetheless, several apparently genuine 
recombinant lineages have been identified using ad hoc approaches16 
and semi-automated methods that cope with vast SARS-CoV-2 data-
sets by reducing the search space for possible pairs of recombinant 
ancestors16,17. Because of the importance of timely and accurate surveil-
lance of viral genetic variation during the continuing SARS-CoV-2 pan-
demic, new approaches for detecting and characterizing recombinant 

haplotypes are needed to evaluate new variant genome sequences as 
quickly as they become available. Such rapid turnaround is essential 
for driving an informed and coordinated public health response to 
new SARS-CoV-2 variants.

We developed a new method for detecting recombination in 
pandemic-scale phylogenies, Recombination Inference using Phylo-
genetic PLacEmentS (RIPPLES, Fig. 1). Because recombination violates 
the central assumption of many phylogenetic methods, that is, that a 
single evolutionary history is shared across the genome, recombinant 
lineages arising from diverse genomes will often be found on ‘long 
branches’, which result from accommodating the divergent evolution-
ary histories of the two parental haplotypes (Fig. 1). Note that as long 
as recombination is relatively uncommon, phylogenetic inference is 
expected to remain accurate even when branch lengths are artifactu-
ally expanded18. RIPPLES exploits that signal by first identifying long 
branches on a comprehensive SARS-CoV-2 mutation-annotated tree19,20. 
RIPPLES then exhaustively breaks the potential recombinant sequence 
into distinct segments and replaces each onto a global phylogeny using 
maximum parsimony. RIPPLES reports the two parental nodes—here-
after termed donor and acceptor—that result in the highest parsimony 
score improvement relative to the original placement on the global 
phylogeny (Supplementary Text 1). Our approach therefore leverages 
phylogenetic signals for each parental lineage and the spatial correla-
tion of markers along the genome. We establish significance using a 
null model conditioned on the inferred site-specific rates of de novo 
mutation (Supplementary Texts2 and 3).
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Substantial testing via simulation indicates that RIPPLES is efficient, 
sensitive and can confidently identify recombinant lineages (Supple-
mentary Texts 4–6). As expected21, when recombination occurs towards 
the edges of the genome or between genetically similar sequences, it is 
harder to detect using RIPPLES (Extended Data Figs. 1 and 2). Nonethe-
less, RIPPLES detects simulated recombinants with 75.8% sensitivity. 
Among the simulated samples detected as recombinants, RIPPLES accu-
rately identifies 90% of simulated breakpoints (Extended Data Table 1 
and Supplementary Text 6). Furthermore, RIPPLES is able to detect 
all highly confident recombinants identified in a previous analysis16 
(Supplementary Text 6). Recombination analysis using RIPPLES on a 
global phylogeny of about 1.6 million SARS-CoV-2 genomes shows that 
a fraction of the sequenced SARS-CoV-2 genomes belongs to detect-
able recombinant lineages. To mitigate the impacts of sequencing and 
assembly errors, we exclude all nodes with only a single descendant, 
we applied conservative filters to remove potentially spurious samples 
from the recombinant sets flagged by RIPPLES, and we manually con-
firmed mutations in a subset of putative recombinant samples using 
raw sequence read data (Supplementary Texts 7 and 8, Extended Data 
Table 2 and Extended Data Fig. 3). After this, we retained 589 unique 
recombination events, which have a combined total of 43,104 descend-
ant samples (Supplementary Table 1). This means that around 2.7% of 
total sampled SARS-CoV-2 genomes are inferred to belong to detectable 
recombinant lineages. Post hoc statistical analysis yields an empiri-
cal false discovery rate estimate of 11% for our statistical thresholds 
(Supplementary Text 9 and Extended Data Table 3). Additionally, 
excess similarity of geographic location and date metadata among 
the descendants of donor and acceptor nodes supports the notion 
that many ancestors of recombinant genomes co-circulated within 
human populations (Supplementary Texts 10 and 11 and Extended 

Data Figs. 4 and 5). Because recombination events that occur between 
genetically similar viral lineages are challenging to detect (Extended 
Data Fig. 2), ours is expected to be a potentially large underestimate 
of the overall frequency of recombination. As a result, the RIPPLES 
estimate is probably conservative with respect to the global frequency 
of recombination in the SARS-CoV-2 population.

RIPPLES uncovered a strikingly non-uniform distribution of recombina-
tion breakpoint positions across the SARS-CoV-2 genome, consistent with 
previous analyses in betacoronaviruses11,22. In particular, among putative 
recombination events there is an excess of recombination breakpoints 
towards the 3' end of the SARS-CoV-2 genome relative to expectations 
on the basis of random breakpoint positions (P < 1 × 10−7; permutation 
test; Supplementary Text 12). Notably, no such bias is apparent when we 
simulate recombination breakpoints following a uniform distribution 
(Supplementary Text 13 and Extended Data Fig. 1). Change-point analysis 
identifies an increase in the frequency of recombination breakpoints 
immediately 5' of the spike protein region (20,875 base pairs; Supple-
mentary Text 14), and this pattern is consistent when restricting our-
selves to putative nodes with the largest numbers of descendants and 
among diverse data sources, further suggesting that it is not artefactual 
(Supplementary Text 15 and Extended Data Table 4). The rate of putative 
recombination breakpoints is about three times higher towards the 3' of 
the change point than the 5' interval (Fig. 2), which is similar to the relative 
recombination rates in the genomes of other human coronaviruses11.

Several lines of evidence suggest that the skewed distribution of 
recombination breakpoint positions is not a consequence of positive 
selection at the level of between-host transmission dynamics. First, many 
of these recombinant clades have existed for a relatively short period of 
time, and might already be extinct. The mean timespan between the earli-
est and latest dates of observed descendants of detected recombinant 
nodes is just 37 days. Second, of the subset of recombination events 
that we inferred to occur between variants of concern (VOC; lineages 
B.1.1.7, B.1.351, B.1.617.2 and P.1 (ref. 23)) and other lineages, VOCs con-
tribute slightly fewer spike protein mutations than non-VOC lineages 
on average (60 out of 125 VOC/non-VOC recombinants, P = 0.48, sign 
test). Third, recombinant clade size does not greatly differ from the 
remaining clade sizes, which would be expected if recombinant lineages 
experienced strong selection (P = 0.8470, permutation test). Therefore, 
although natural selection on between-host transmission dynamics of 
recombinant lineages could also impact the observed distribution of 
recombinant breakpoint positions11, our data indicates that other biases 
shape the distribution of recombination events across the SARS-CoV-2 
genome. These could include a neutral mechanistic bias affecting the 
distribution of recombination breakpoints.

Although not yet widespread among circulating SARS-CoV-2 
genomes, recombination has measurably contributed to the genetic 
diversity in SARS-CoV-2 lineages. The ratio of variable positions con-
tributed by recombination (R) versus those resulting from de novo 
mutation (M), R/M, is commonly used to summarize the relative impacts 
of these two sources of variation22. Using our dataset of putative recom-
bination events, we estimate that R/M = 0.00264 in SARS-CoV-2 (Sup-
plementary Text 16). This is low for a coronavirus population (for 
example, for Middle East respiratory syndrome, R/M is estimated to 
be 0.25–0.31 (ref. 22)), which presumably reflects the extremely low 
genetic diversity among possible recombinant ancestors during the 
earliest phases of the pandemic and the conservative nature of our 
approach. As SARS-CoV-2 populations accumulate genetic diversity 
and co-infect hosts with other species of viruses, recombination will 
play an increasingly large role in generating functional genetic diversity 
and this ratio could increase24. RIPPLES is therefore poised to play a 
primary role in detecting new recombinant lineages and quantifying 
their impacts on viral genomic diversity as the pandemic progresses.

Our extensively optimized implementation of RIPPLES allows it to 
search the entire phylogenetic tree and detect recombination both 
within and between SARS-CoV-2 lineages without a priori defining a 
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Fig. 1 | RIPPLES exhaustively searches for optimal parsimony improvements 
using partial interval placements. a, A phylogeny with six internal nodes 
(labelled a–f), in which node f (in bold) is the one being investigated as a putative 
recombinant. The initial parsimony score of node f is 4, according to the multiple 
sequence alignment below the phylogeny, which shows the variation among 
samples and internal nodes. Note that internal nodes may not have corresponding 
sequences in reality but test for recombination using reconstructed ancestral 
genomes. b–d, Three partial placements of the two intervals (grey cells indicate 
sites outside the interval) resulting from the breakpoints after site 5 (panel b),  
9 (panel c) and 12 (panel d) respectively, along with their resulting parsimony 
scores. The dashed lines indicate the new branches resulting from the partial 
placements of f. Arrows mark sites that increase the sum parsimony of the two 
partial placements of f. The optimal partial placement and breakpoint prediction 
for node f is in the centre (c), with one breakpoint after site 9 and with partial 
placements both as a sibling of node c and as a descendant of node d.
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set of lineages or clade-defining mutations. This is a key advantage 
of our approach relative to other methods that cope with the scale of 
SARS-CoV-2 datasets by reducing the search space for possible recombi-
nation events (for example, refs. 16,17,25). RIPPLES discovers 223 recombina-
tion events within branches of the same Pango lineages. Our results also 
include 366 interlineage recombination events (Supplementary Table 1). 
Additionally, we find evidence that recombination has influenced the 
Pangolin SARS-CoV-2 nomenclature system23. Specifically, we discover 
that the root of the B.1.355 lineage might have resulted from a recombina-
tion event between nodes belonging to the B.1.595 and B.1.371 lineages 
(Fig. 3 and Supplementary Table 1). These diverse recombination events 
highlight the versatility and strengths of the approach taken in RIPPLES.

The detection of increased recombination rates in the 3' portion of 
the SARS-CoV-2 genome, which contains the spike protein, highlights 
the utility of continuing surveillance. The spike protein is a primary loca-
tion of functional novelty for viral lineages as they adapt to transmission 

within and among human hosts. Our discovery of both the excess of 
recombination events specifically around the spike protein and the 
relatively high levels of recombinants in circulation at present underline 
the importance of monitoring the evolution of new viral lineages that 
arise through mutation or recombination through real-time analyses 
of viral genomes. Our work also emphasizes the impact that explicitly 
considering phylogenetic networks will have for accurate interpreta-
tion of SARS-CoV-2 sequences11.

Beyond SARS-CoV-2, recombination is a major evolutionary force 
driving viral and microbial adaptation. It can drive the spread of anti-
biotic resistance7, drug resistance1, and immunity and vaccine escape2. 
Identification of recombination is an essential component of pathogen 
evolutionary analyses pipelines as recombination can affect the quality 
of phylogenetic, transmission and phylodynamic inference3. For these 
reasons, computational tools to detect microbial recombination have 
become very popular and important in recent years4. The SARS-CoV-2 
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Fig. 2 | RIPPLES detects an excess of recombination in the spike protein 
region. a, The distribution of midpoints of each breakpoint’s prediction 
interval are shown as a density plot, with the underlying recombination 
prediction intervals plotted as individual lines in grey. We used the midpoint of 
the breakpoint prediction interval because recombination events can only be 
localized to prediction intervals, which are the regions between two 
recombination-informative SNPs. A dashed vertical line at position 20,875 
delimits recombination rate regions identified by change-point analysis 
(Supplementary Text 15). The apparent lack of recombination towards the 

chromosome edges probably reflects a detection bias, which we describe 
above (Extended Data Fig. 2). b–d, Recombination-informative sites (that is, 
positions where the recombinant node matches either but not both parent 
nodes) for three example recombinant trios detected by RIPPLES. The numbers 
to the left of each sequence correspond to the node identifiers from our MAT.  
b and d are examples of a recombinant with a single breakpoint (shown with 
dotted lines), c is an example of a recombinant with two breakpoints. b–d were 
generated using the SNIPIT package (https://github.com/aineniamh/snipit).

https://github.com/aineniamh/snipit
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pandemic has driven an unprecedented surge of pathogen genome 
sequencing and data sharing, which has in turn highlighted some of 
the limitations of current software in investigating large genomic data-
sets5. RIPPLES was built for pandemic-scale datasets and is sufficiently 
optimized to exhaustively search for recombination in one of the larg-
est phylogenies ever inferred in 40 min (Supplementary Text 17). We 
expect RIPPLES to perform best on densely sampled genomic datasets, 
which will probably become the norm for many globally distributed 
pathogens, but we caution that it has not yet been validated on other 
species. To facilitate real-time analysis of recombination among tens 
of thousands of new SARS-CoV-2 sequences being generated by diverse 
research groups worldwide each day26–28, RIPPLES provides an option 
to evaluate evidence for recombination ancestry in any user-supplied 
samples within minutes (Supplementary Text 17). RIPPLES therefore 
opens the door for rapid analysis of recombination in heavily sampled 
and rapidly evolving pathogen populations, and provides a tool for 
real-time investigation of recombinants during a pandemic.
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Fig. 3 | RIPPLES uncovered evidence that the B.1.355 lineage might have 
resulted from a recombination event between lineages of B.1.595 and B.1.371. 
a, Sub-phylogeny consisting of all 78 B.1.355 samples (purple) and the most closely 
related 78 samples to nodes 94,353 and 102,299 from lineages B.1.371 and B.1.595, 
respectively, using the ‘k nearest samples’ function in matUtils20. Nodes 94353 
(red) and 102299 (blue) are connected by dotted lines to node 94,354 (purple), the 
root of lineage B.1.355. Recombination-informative mutations are marked where 
they occur in the phylogeny, with those occurring in a parent but not shared by  
the recombinant sequence shown in grey. b, Recombination-informative sites 
(that is, sites where the recombinant node matches either but not both parent 
nodes) are shown following the same format as Fig. 2b–d. b was generated using 
the SNIPIT package (https://github.com/aineniamh/snipit).
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Methods

RIPPLES uses the space-efficient data structure of mutation-annotated 
trees (MATs)20, in which the branches of the phylogenetic tree are anno-
tated with mutations that have been inferred to have occurred on them, 
to identify recombination events. Figure 1 illustrates the underlying 
algorithm. RIPPLES identifies putative recombinant nodes containing 
at least the number of mutations specified by the user and infers the 
set of mutations that have occurred on its corresponding sequence 
by accounting for all mutations annotated on the branches on its path 
from the root. RIPPLES then adds one or two breakpoints on mutation 
sites and assesses parsimony score improvement using partial place-
ments compared to the starting parsimony. For more details, see Sup-
plementary Text 1. To determine whether putative recombinants were 
significant, we developed a null model by selecting nodes at random 
and adding k additional mutations drawn from the actual mutation 
spectra in our global tree. We then placed these samples on the tree 
and used RIPPLES to determine their parsimony score improvements 
(Supplementary Text 2). For each putative recombinant in our global 
tree, we compared its parsimony score improvement to the distribution 
of null parsimony score improvements for the same initial parsimony 
score (Supplementary Text 3). We developed our starting tree by first 
taking the 28 May 2021 public tree19,20, masking all problematic sites29, 
and pruning samples with fewer than 28,000 non-N nucleotides and 
those with two or more non-[ACGTN-] nucleotides (Supplementary 
Text 5). After this, we optimized this tree by running matOptimize 
(Supplementary Text 4) twice, with a subtree pruning and regrafting 
(SPR) radius of first 10 and then 40 in subsequent rounds and with 
the masked Variant Call Format (VCF) file as an input. Instructions for 
using RIPPLES are available at https://usher-wiki.readthedocs.io/en/
latest/tutorials.html. We ran RIPPLES on the n2d-highcpu-224 Google 
Cloud Platform instance containing 224 virtual central processing 
units (vCPUs) (Supplementary Text 18).

To test the sensitivity of RIPPLES, we simulated recombinant samples 
by choosing two random internal nodes from our phylogeny with at 
least ten descendants and choosing breakpoints at random across the 
genome. We generated 1,000 simulations each for one and two break-
point recombinants with no, one, two and three additional mutations 
added to the sequence after the recombination event, using scripts 
available at https://github.com/bpt26/recombination/. These combi-
nations yielded 2,000 total simulated recombinant lineages. We then 
measured the ability of RIPPLES to detect breakpoints as a function 
of the position of the breakpoint and the minimum genetic distance 
from the recombinant node to either parent (Supplementary Text 6; 
genetic distance is estimated on the basis of the number of mutations 
inferred to separate the focal samples, lineages or nodes). We also evalu-
ated the sensitivity of RIPPLES by ensuring that it detected each of the 
high-confidence recombinant SARS-CoV-2 clusters of Jackson et al.16.

We applied several post hoc filters to remove putative recombi-
nant nodes that may be false positives resulting from several possi-
ble sources of error. For each internal node from each trio (putative 
recombinant, donor and acceptor nodes) that comprised a recombi-
nant event, we downloaded the consensus genome sequence for the 
nearest descendants of each node from COG-UK, GenBank, GISAID 
and the China National Center for Bioinformatics. We then aligned 
the sequences of all descendants for each trio using MAFFT30, focus-
ing specifically on recombination-informative sites, that is, where the 
allele of the recombinant node matched one parent node but not the 
other. If recombination-informative mutations were near to indels 
or missing bases, or if the entire basis for recombination was a single 
cluster of mutations in a 20-nucleotide span (Supplementary Text 7). 
We also confirmed sequence quality by manually examining raw reads 
for ten samples in which we could confidently link the raw sequence 
read data to a given consensus genome (Supplementary Text 8). To 
estimate the false discovery rate (FDR) associated with our specific 

approach and statistical threshold selected, we computed a post hoc 
empirical FDR. We obtained the number of internal nodes that we tested 
and that were associated with a given parsimony score. Then, for each 
initial parsimony score and parsimony score improvement, we obtained 
the expected number of internal nodes that would show that parsi-
mony score improvement under the null model. Our FDR (Extended 
Data Table 3) is the ratio of expected nodes for a given initial and final 
parsimony score to the number of detected recombinant nodes with 
the same initial and final parsimony score (Supplementary Text 9).

We also performed post hoc analysis using sample metadata to 
determine whether the ancestors of the recombinant nodes had higher 
spatial or temporal overlap than expected by chance. We computed 
geographic overlap as the joint probability of choosing a sample from 
the same country from the descendants of the donor and the acceptor 
nodes. For temporal overlap, we recorded intervals from the earliest 
to the most recent sample descended from the donor and acceptor, 
respectively, and calculated the minimum number of days separating 
the two intervals (with 0 for overlapping intervals). We generated a null 
distribution for both categories by selecting, for each detected trio, 
two random internal nodes from the tree with a number of descendants 
equal to the real donor and acceptor respectively. We then calculated 
geographic and temporal overlap in the same way for this random set 
(Extended Data Fig. 4 and Supplementary Text 10).

To determine whether identified recombination breakpoints are 
significantly shifted towards the 3' end of the genome, we performed 
a permutation test comparing the difference between the mean of 
the distribution of uniformly simulated breakpoints and the mean of 
the detected breakpoint position distribution in the true set (Supple-
mentary Text 12). We also conducted a change-point analysis using 
the changepoint R package31 and fit a Poisson model to the count of 
recombination prediction interval midpoints. We then computed 
the mean rate of recombination breakpoints within the intervals 
on either side of the identified change point to estimate the fold  
increase in recombination rate in the 3' portion of the genome 
(Supplementary Text 13). To estimate R/M, we found the decrease 
in parsimony score associated with each detected recombination 
event as an estimate of R. We then calculated M by taking this value 
and subtracting it from the total number of mutations observed 
across our entire phylogeny (Supplementary Text 16). R/M is the 
ratio of these values.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
All data is available in the manuscript or the supplementary materials. 
Dataset 1 (containing the phylogeny analysed for recombination in this 
study in Newick format) and dataset 2 (containing a list of descendant 
samples of recombinant nodes identified through RIPPLES) are avail-
able at https://doi.org/10.5281/zenodo.671737832.

Code availability
RIPPLES software is available under the MIT license as part of the UShER 
package at https://github.com/yatisht/usher. We provide a reproduc-
ible Google Cloud Platform workflow for RIPPLES under https://github.
com/yatisht/usher/tree/master/scripts/recombination. An archived 
version of the specific code and workflow used in this study is avail-
able from https://doi.org/10.5281/zenodo.6709991(ref. 33). We dis-
tribute RIPPLES with UShER because it uses the same underlying data 
objects and UShER is required to infer the input MAT. Documentation 
for RIPPLES and associated utilities can be found at https://usher-wiki.
readthedocs.io/en/latest/. 
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Extended Data Fig. 1 | Histogram of inferred and simulated recombination 
breakpoint positions. A) True simulated breakpoints (red) are shown with  
all detected recombination interval midpoints (blue). Where blue bars exceed 
the height of red, it implies an excess rate of detection relative to the true rate 
of breakpoint positions. Likewise, where red bars exceed the height of blue,  

it implies a deficit. B) True simulated breakpoints (red) are shown with 
detected recombination interval midpoints for the 20% of the most closely 
related donor-acceptor pairs (blue). In both comparisons, we broke ties 
between equivalently improved partial phylogenetic placement parsimony 
scores by selecting the largest recombination intervals.



Extended Data Fig. 2 | RIPPLES more easily detects breakpoints causing 
large changes in parsimony score. The distribution of simulated breakpoints 
detected for each simulated sample is shown for each sample by A) initial 
parsimony score and B) minimum genetic distance from simulated sample to 
parent. Initial parsimony (A) is dependent upon the initial placement of the 
recombinant node in the tree and refers to the genetic distance in mutations 
between the recombinant node and its direct parent in the phylogeny. 
Minimum genetic distance from sample to parent (B) refers to the number of 
mutations relevant to recombination that separate the recombinant node from 
either the donor or the acceptor, and is not dependent on -the initial phylogeny. 

Similarly, among the simulated samples detected by RIPPLES, the detected and 
undetected breakpoints are shown by C) initial parsimony score and D) 
minimum genetic distance to parent. Detected samples and breakpoints are 
shown in black and undetected samples and breakpoints are shown in red.  
We condition on locating the true breakpoints and observing a significant 
parsimony score according to our phylogenetic null model. Therefore, we 
exclude recombination events with minimum starting parsimony scores and 
genetic distances of less than 3, as these are not significant under our null 
model.
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Extended Data Fig. 3 | Examples of detected trios filtered out due to 
sequence quality concerns. A) Partial alignment of consensus sequences 
from a filtered recombinant trio of nodes 77695, 169585, and 77690, centred  
on site 28225, has consensus sequences of mostly 'N' spanning several sites 
meant to be informative of a recombination event. This can occur when many 
descendant samples have missing data. Mismatches between the three 
consensus sequences immediately flanking this region may be the result of 
poor sequencing quality as well. B) Partial alignment of consensus sequences 

from a filtered recombinant trio of nodes 173213, 173209, and 173274, centred 
on site 16846, has 7 recombination-informative mutations in an 8-nucleotide 
window that are unlikely to be true mutation events, but rather an alignment 
artifact or a complex indel event. C) Partial alignment of consensus sequences 
from a filtered recombinant trio of nodes 293461, 293460, and 211841, centred 
on site 29769, has 3 mismatches in a 5-nucleotide window, immediately flanked 
by a large gap in the alignment and are unlikely to be true mutations.



Extended Data Fig. 4 | Recombinant ancestors exhibit increased spatial and temporal overlap. A) Spatial and B) temporal overlap for our recombinant trios  
(in blue) and the null distribution (in gray), with Mann-Whitney Ranked-Sum p-values for the statistical increase in overlap for the recombinant ancestors shown on the top.
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Extended Data Fig. 5 | Ancestors of recombinants are genetically similar.  
A) The initial parsimony scores for placements of putative (red) and simulated 
(blue) recombinant samples. B) The genetic distance between inferred (red) 
and simulated (blue) ancestor-donor pairs that gave rise to putative or 
simulated recombinants.



Extended Data Table 1 | Summary of simulated breakpoint detection

If a simulated recombinant had only statistically insignificant parsimony improvements, it is not included here as we consider this recombination event undetectable.
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Extended Data Table 2 | Raw sequence read datasets used 
to confirm recombination informative positions in selected 
recombinant samples



Extended Data Table 3 | False discovery rate estimation for 
each parsimony score improvement observed in our dataset
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Extended Data Table 4 | Increased rate of breakpoint 
interval midpoint in the 3' portion of the genome when the 
recombinants are subdivided by the country of origin
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