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Brain–phenotype models fail for individuals 
who defy sample stereotypes

Abigail S. Greene1,2 ✉, Xilin Shen3, Stephanie Noble3, Corey Horien1,2, C. Alice Hahn3, 
Jagriti Arora3, Fuyuze Tokoglu3, Marisa N. Spann4, Carmen I. Carrión5, Daniel S. Barron6,7,8,9, 
Gerard Sanacora7, Vinod H. Srihari7, Scott W. Woods7, Dustin Scheinost1,3,10,11,12 & 
R. Todd Constable1,3,10,13 ✉

Individual differences in brain functional organization track a range of traits, 
symptoms and behaviours1–12. So far, work modelling linear brain–phenotype 
relationships has assumed that a single such relationship generalizes across all 
individuals, but models do not work equally well in all participants13,14. A better 
understanding of in whom models fail and why is crucial to revealing robust, useful 
and unbiased brain–phenotype relationships. To this end, here we related brain 
activity to phenotype using predictive models—trained and tested on independent 
data to ensure generalizability15—and examined model failure. We applied this 
data-driven approach to a range of neurocognitive measures in a new, clinically and 
demographically heterogeneous dataset, with the results replicated in two 
independent, publicly available datasets16,17. Across all three datasets, we find that 
models reflect not unitary cognitive constructs, but rather neurocognitive scores 
intertwined with sociodemographic and clinical covariates; that is, models reflect 
stereotypical profiles, and fail when applied to individuals who defy them. Model 
failure is reliable, phenotype specific and generalizable across datasets. Together, 
these results highlight the pitfalls of a one-size-fits-all modelling approach and the 
effect of biased phenotypic measures18–20 on the interpretation and utility of 
resulting brain–phenotype models. We present a framework to address these 
issues so that such models may reveal the neural circuits that underlie specific 
phenotypes and ultimately identify individualized neural targets for clinical 
intervention.

Relating individual differences in brain activity to complex phenotypes 
is a long-standing aim of human neuroscience, which has been advanced 
by the application of machine learning algorithms to neuroimaging 
and phenotypic data. Such work has revealed patterns of brain activity 
that are associated with a range of traits1,2,5, behaviours6–9, psycho-
pathology10–12, clinical risk factors3 and treatment outcomes4 across 
operationalizations, datasets, age groups and diagnoses. Together, 
this reflects a paradigm shift in human neuroscience research from a 
focus on the group to a focus on the individual, with important potential 
applications to clinical practice21–23.

To deliver on this promise, however, these approaches must iden-
tify patterns of brain activity that are relevant to the phenotype of 
interest in a given individual—the patient sitting before their clini-
cian, for example. Previous linear modelling work has relied on the 
assumptions that (1) a single brain network is associated with a given 

phenotype, with patterns of activity within that network varying 
across individuals10,24,25; and (2) larger, more heterogeneous sam-
ples will more accurately and reliably capture this single model26,27. 
But although many published models have demonstrated impres-
sive generalizability6,9,10, they do not account for brain–phenotype 
relationships in all individuals13,14. This raises the crucial question of 
in whom models fail, and why.

The existence of structured model failure—some individuals who 
are better fit by a model than others14,24,26—would suggest that one 
brain–phenotype relationship does not fit all, and that systematic 
bias may determine who is fit and who is not. This, in turn, may 
engender imprecise, misleading and in some cases harmful model 
interpretations. That is, a brain network that is found to be associ-
ated with a given phenotype may only apply to a specific subset of 
the population at large, limiting its practical utility14,26,28, or may not 
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represent the phenotype of interest. Indeed, factors that interfere 
with adequate phenotypic characterization have been documented 
for many widely used neurocognitive tests18,29, and may include the 
fallacy of universalism (construct bias), the application of inap-
propriate norms, discordance between primary and assessment 
language and the presence of instrument, administration (method) 
or interpretation bias18–20,30,31. Related concerns about the ethical 
implications of data and model bias are receiving increasing atten-
tion in the machine learning literature32 (for example, racial dispari-
ties33 or unrelated attribute sensitivity34 in facial recognition, and 
the reflection of biased input data in algorithmic predictions, from 
criminal justice35,36 to healthcare37,38). However, whether brain–phe-
notype models are affected by bias in phenotype measurement and, 
if so, how this bias governs model failure remain open questions. 
Answering them is a prerequisite for discovering precise and useful 
brain–phenotype relationships.

To do so, we trained models to use brain activity to classify neu-
rocognitive test performance and investigated the failure of these 
models. Across a range of data-processing and analytical approaches 
applied to three independent datasets, we found that model failure 
is systematic, reliable, phenotype specific and generalizable across 
datasets, and that the scores of individuals are poorly classified 
when they ‘surprise’ the model, performing in a way that is incon-
sistent with the consensus covariate profile of high and low scorers. 
Together, these findings suggest that brain-based models often rep-
resent not unitary neurocognitive constructs, but rather constructs 
of interest intertwined with clinical and sociodemographic factors. 
These factors comprise a stereotypical profile that does not fit all 
individuals in the study sample, and may generalize worse still to 
the population at large39. Models that predict this profile will fail in 
those who defy it. Model failure is thus informative, both because 
it identifies subtypes that require distinct predictive models, and 
because it offers insight into data and model biases that should 
guide model interpretation.

FC predicts phenotype but models frequently fail
To examine in whom models fail, we first developed a pipeline to 
train and test models, using functional connectivity (FC) to predict 
performance on tests that represent a range of cognitive domains. 
Primary results were derived from a new dataset collected at Yale (Sup-
plementary Tables 1–3 and ‘Datasets’ in Methods) using four distinct 
prediction algorithms (Fig. 1a, Extended Data Fig. 1, Supplementary 
Table 11 and ‘Phenotype classification’ in Methods), and validated in 
two independent, publicly available datasets (UCLA Consortium for 
Neuropsychiatric Phenomics17 and the Human Connectome Project 
(HCP)16; Supplementary Table 3).

FC from the best-performing condition for each measure classified 
scores on 14 out of 16 phenotypic measures with above-chance per-
formance (mean accuracy = 0.51–0.88; Fig. 1b). Performance varied 
across in-scanner conditions that were used to calculate FC (mean 
accuracy across iterations and measures, using only FC calculated 
from the best-performing condition = 0.68; mean accuracy across all 
conditions, iterations, and measures = 0.60; Fig. 1b and Supplemen-
tary Table 4). FC also significantly classified phenotype in the UCLA 
data (Extended Data Fig. 2a and Supplementary Table 5) and HCP data 
(with family members assigned to the same fold, and permutations 
respecting family-related limits on exchangeability40,41; Extended Data 
Fig. 3a and Supplementary Table 6). However, although the classifica-
tion accuracy of most phenotypic measures was significantly better 
than chance, many participants were misclassified (for example, 
12–59% of participants across all conditions and measures in the Yale 
dataset; see Supplementary Tables 4–6 for model performance in 
each dataset). We turn next to an investigation of structure in these 
model failures.

Model failure is consistent and phenotype specific
First, we examined whether misclassification demonstrates 
non-random structure. We reasoned that if misclassification were 
random, misclassification frequency (that is, the fraction of itera-
tions on which a given participant was misclassified; see ‘Internal 
validation analyses’ in Methods) would be approximately nor-
mally distributed around a mean of 0.5. Indeed, when phenotypic 
labels were permuted, the mean misclassification frequency did 
not differ from 0.5 in 14 out of 16 cases (P > 0.05, FDR adjusted, 
by two-tailed, one-sample t-test for all measures except symbol 
search (mean = 0.505, PFDR = 0.02) and letter–number (mean = 0.507, 
PFDR = 0.0004)). Conversely, misclassification frequency using origi-
nal (unpermuted) data has a markedly different, U-shaped distri-
bution; for most measures, most participants were consistently 
correctly classified, whereas a smaller subset of participants was 
consistently misclassified across iterations (Fig. 2a). For every meas-
ure, the mean and median of the distribution significantly differed 
from 0.5 (all P < 0.05, FDR adjusted (32 tests), by two-tailed t-test and 
Wilcoxon signed-rank test), and the distributions of misclassifica-
tion frequency for original and permuted analyses significantly dif-
fered for every measure (all P < 0.0001, FDR adjusted, by two-tailed, 
two-sample Kolmogorov–Smirnov test).

Next, we tested the consistency of misclassification across in-scanner 
conditions. For all neurocognitive measures except cancellation, cor-
relation of misclassification frequency across conditions for a given 
measure was significantly greater than chance (that is, than correlation 
of misclassification frequency derived from permuted-label analyses, 
by paired, one-tailed Wilcoxon signed-rank test; all P < 0.0001, FDR 
adjusted; Fig. 2b), suggesting that the tendency to be misclassified is 
consistent regardless of the in-scanner condition during which fMRI 
data were acquired.

Finally, we tested the phenotype specificity of misclassification—
that is, whether similar phenotypic measures yield similar sets of 
misclassified participants. Indeed, the more similar the phenotypic 
measure scores, the more similar the misclassification frequencies 
of participants for those measures (measure versus misclassification 
frequency correlation: rs = 0.49, P < 0.0001; Fig. 2c). Hierarchical link-
age demonstrates which measures have a similar misclassification 
frequency, revealing a logical organization by cognitive construct 
(Fig. 2d).

These results were replicated in the UCLA and HCP datasets (Extended 
Data Figs. 2 and 3). In the HCP sample, misclassification frequency did 
not significantly differ for individuals with and without siblings in the 
sample (crystallized intelligence (cIQ) P = 0.77, fluid intelligence (fIQ) 
P = 0.36, uncorrected, by Mann–Whitney U test). Misclassification fre-
quency and overall classification performance were comparable with 
additional motion controls (Supplementary Fig. 1 and Supplementary 
Table 7), as well as with different supervised learning algorithms, brain 
parcellation, cross-validation approach and phenotype binarization 
threshold (Extended Data Fig. 1). Together, these results show that 
model failure is reliable and phenotype specific.

Models and their failure generalize across datasets
For misclassification to be a meaningful organizing principle and not 
simply the product of relatively small (Yale and UCLA) or idiosyncratic 
samples, it must generalize across datasets. To ensure that this is the 
case, we trained a model to use GFC42 to classify performance on three 
neurocognitive measures that are included in both the Yale and UCLA 
datasets (letter–number, vocabulary and matrix reasoning). Models 
were trained on all participants, only on within-sample CCP or only on 
within-sample MCP, and all analyses were performed twice, once with 
each dataset as the training set and all participants in the other dataset 
as the test set (‘Cross-dataset analysis’ in Methods).
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First, we found that models generalize across dataset. That is, 
whole-sample-based models classified neurocognitive scores in the 
whole test sample with above-chance accuracy, as did models that 
were trained only on CCP (P < 0.0001, FDR adjusted, by nested ANOVA; 
Fig. 3a, ‘Train: All and Train: Correct; Test: All’).

Next, across all measures and both datasets, we found that classifica-
tion outcome (correct versus misclassified) generalizes across dataset. 
CCP in one dataset were classified with above-chance accuracy by a 
model trained on all participants or only on CCP in the other dataset 
(both P < 0.0001, FDR adjusted, by nested ANOVA (see Supplementary 
Table 8 for a note on multiple comparison adjustment); Fig. 3a, ‘Train: 
All and Train: Correct; Test: Correct’). Conversely, a model trained on 
MCP performed with below-chance accuracy on the other dataset’s 
CCP (P < 0.0001, FDR adjusted, by nested ANOVA; Fig. 3a, ‘Train: Mis-
classified; Test: Correct’). Similarly, MCP in one dataset were classified 
with above-chance accuracy only by a model trained on the other 
dataset’s MCP (P < 0.0001, FDR adjusted, by nested ANOVA), but were 
classified with below-chance accuracy by models that were trained on 
the whole training dataset or only on its CCP (both P < 0.0001, FDR 
adjusted, by nested ANOVA; Fig. 3a, ‘Test: Misclassified’). Notably, 
building group-specific models of phenotypic score (that is, training 
a model on CCP and applying it to CCP, or training a model on MCP 

and applying it to MCP, rather than training and testing on the whole 
datasets) improved classification accuracy (CCP versus whole and 
MCP versus whole; both P < 0.0001 by paired, one-tailed Wilcoxon 
signed-rank test).

In sum, CCP-based models work on another dataset’s CCP, and 
MCP-based models work on another dataset’s MCP, but CCP-based 
models in one dataset do not work for MCP in the other, and vice versa. 
All results were replicated in analogous analyses using the HCP dataset 
(Extended Data Fig. 3d), and individual models tested for significance 
using permutation tests yield comparable trends (Supplementary 
Table 8). Together, these results demonstrate that what it means to 
be misclassified is consistent across datasets.

Comparison across measures, datasets and groups
The significantly below-chance performance when a model was 
trained on CCP and tested on MCP and vice versa motivated us to 
further investigate model similarity across groups. First, we trained 
the model on CCP, as described previously, switched positively and 
negatively correlated edge sums in the test set and calculated the 
classification accuracy in test-set MCP, as before, using this ‘inverted 
model’. This was then repeated with MCP as the training data and the 
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Fig. 1 | FC can be used to classify scores on a range of neurocognitive 
measures. a, Schematic illustration of the main classification pipeline. 
Classification was performed using leave-one-out (LOO) cross-validation. The 
training set was subsampled from the remaining participants to balance 
classes and was submitted to a linear support vector machine (SVM), using 
summed FC of selected edges as features. This trained model was then applied 
to the left-out test participant to classify their score as high or low from their 
FC. Participants who were successfully classified are termed ‘correctly 
classified participants’ (CCP), and participants who were misclassified are 
termed ‘misclassified participants’ (MCP). This procedure was repeated 
iteratively, with each participant used as the test participant, and this, in turn, 
was repeated 100 times with different training set subsamples selected on 
each iteration. This pipeline was repeated for each in-scanner condition and 
neurocognitive measure (numbers correspond to Yale study; comparable 
approach for UCLA and HCP). To ensure that the results are robust to these 
choices, analyses were repeated with alternative algorithms (bagging72 and 

neural networks); with 10-fold cross-validation; with an alternative 
parcellation of functional magnetic resonance imaging (fMRI) data; with an 
alternative threshold for score binarization; and with continuous phenotypic 
measures. See Methods, Extended Data Fig. 1 and Supplementary Table 11 for 
comparable results. b, Classification accuracy for each phenotypic measure, 
shown separately for high and low scorers and compared to the distribution of 
accuracy from 100 iterations of permutation tests (‘perm’). Significance was 
determined using the fraction of iterations on which the null classifier 
performed as well as or better than the median accuracy of unpermuted 
classifiers (across the whole sample) and resulting one-tailed P values were 
adjusted for multiple comparisons using the false discovery rate (FDR; 16 
tests). Distributions and significance testing reflect accuracy across 
iterations for the best-performing in-scanner conditions, each noted in the 
plot title. For abbreviations and more on tasks and phenotypic measures,  
see Supplementary Tables 1 and 2. For sample sizes, see Supplementary 
Table 4.
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inverted-model accuracy calculated in test-set CCP. In both Yale–
UCLA and Yale–HCP analyses, the mean classification accuracy was 
significantly above chance in both cases (all P < 0.0001, FDR adjusted 
(18 tests), by nested ANOVA; Yale–UCLA CCP model applied to 
inverted MCP: overall mean (s.d.) = 0.64 (0.06); MCP model applied to 
inverted CCP = 0.64 (0.09); Yale–HCP CCP model applied to inverted 
MCP = 0.76 (0.05); MCP model applied to inverted CCP = 0.76 (0.05)). 
Together, these results show that edges that are positively correlated 
with phenotype in CCP are negatively correlated with phenotype in 
MCP, and vice versa.

The success of these inverted models suggested that models 
trained in CCP and MCP would overlap substantially for a given phe-
notype, albeit with opposite relationships between FC and pheno-
type. We also expected similarity of a given model across phenotypic 
measures and datasets. To test these predictions, we calculated the 
similarity of every cross-dataset model pair as 1 − Jaccard distance 

(‘Cross-dataset analysis’ in Methods) and visualized the resulting 
model-by-model similarity matrix, thresholded for significance at 
P < 0.05, by the hypergeometric cumulative distribution function 
(Fig. 3b). As expected, for a given phenotypic measure, significant 
similarity is primarily observed across datasets and measures for 
the same model type (for example, edges positively correlated with 
phenotype in CCP-based models; ‘PC’ in Fig. 3b), and opposite-sign 
edges in the other classification outcome group (for example, edges 
negatively correlated with phenotype in Yale CCP-based models and 
positively correlated with phenotype in Yale MCP-based models; UNC 
and UPM in Fig. 3b).

Model similarity across datasets as well as opposite relationships 
between FC and phenotype in correct and misclassified groups are 
also apparent when the selected edges incident to each model’s 
highest-degree node are visualized (Fig. 3c and Extended Data Fig. 4). 
For example, node 166 is the highest-degree node in both the UCLA-test 
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using original (that is, unpermuted) data (red) and permuted data (grey).  
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MCP and UCLA-test CCP letter–number models, and exhibits similar 
incident edges, but with largely opposite relationships to phenotype 
(for example, edges that are positively correlated with letter–number 
performance in CCP are negatively correlated with performance in 
MCP). Across datasets, similarities can also be observed. For example, 
similar edges between node 166 and cerebellum were selected for their 

negative correlations with phenotype in MCP in both UCLA and Yale 
data (Fig. 3c). However, the inverted nature of the MCP and CCP models 
does not entirely account for their selected edges, as evidenced by dif-
ferences in patterns of FC across models. This suggests that MCP and 
CCP models comprise a core set of overlapping edges as well as sets of 
distinct edges.
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Tables 4 and 5 for test-set sizes), and the results are displayed as accuracy in all 
test participants, only in test CCP (Test: Correct), and only in test MCP (Test: 
Misclassified). *Significantly different from chance (mean accuracy using 
permuted data; dotted line presented for visualization only) by two-tailed, 
nested ANOVA; all P < 0.0001, FDR adjusted (nine tests). Bar height, grand 
mean; error bars, s.d. b, Similarity of model pairs, with similarity = 1 − Jaccard 
distance, thresholded at P < 0.05, by the hypergeometric cumulative 
distribution function. Models are divided into edges that are positively and 

negatively correlated with phenotype to facilitate interpretation. Larger, 
darker circles indicate increased similarity. Number of edges in each model 
(that is, selected on at least 75% of iterations): 30–374. Cells shaded on the 
basis of predicted patterns of similarity. c, Each model’s highest-degree  
node and its incident edges are visualized in all models. Models for which the 
depicted node is the highest-degree node are enclosed in grey rectangles. 
Red, positive relationship with phenotype; blue, negative relationship with 
phenotype. Node size scales with degree, and nodes are coloured red if,  
of the edges incident to that node, the number of edges positively related  
to phenotype is greater than or equal to the number of edges negatively 
related to phenotype; blue otherwise. P, edges positively correlated with 
phenotype; N, edges negatively correlated with phenotype; UM, Yale MCP 
train, UCLA test; UC, Yale CCP train, UCLA test; YC, UCLA CCP train, Yale test; 
YM, UCLA MCP train, Yale test. Node number in the Shen atlas (MNI 
coordinates).
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Model failure reveals groups that defy stereotypical 
profiles
Given the accumulated evidence that model failure is systematic, with a 
subset of participants reliably misclassified and misclassification gen-
eralizing across measures and datasets, we turn finally to the question 
of who these misclassified individuals are. To characterize misclassi-
fied Yale participants, misclassification frequency was related to 15 
covariates (characterizing participant demographics, clinically relevant 
experiences, in-scanner head motion and overall cognitive ability; for 
a description of how these covariates were selected and their relation-
ships to each other, see ‘Exploring contributors to misclassification’ 
in Methods and Supplementary Fig. 2). Misclassification frequency 
was averaged separately for measures on which participants scored 
low and high, to yield, for each participant, two mean misclassification 
frequencies. We note that many of these covariates, particularly race, 
are proxies that were available, but are neither biological nor causal 
and obscure much heterogeneity of culture, identity and experience 

(see ‘Causes and implications of model failure’ (below) and ‘Additional 
limitations and future directions’ in Supplementary Discussion). Of 
these covariates, five were significantly related to misclassification 
frequency in both low and high scorers (Fig. 4a): age (low rs = −0.38, 
P < 0.0001; high rs = 0.32, P = 0.001), race (low group median differ-
ence = −0.14, P = 0.02; high group median difference = 0.19, P = 0.003), 
education (low rs = 0.32, P = 0.001; high rs = −0.33, P = 0.001), overall 
cognitive ability (low rs = 0.31, P = 0.007; high rs = −0.45, P < 0.0001) 
and motion (low rs = −0.40, high rs = 0.48, both P < 0.0001; all P values 
FDR adjusted).

Together, these covariates reflect a stereotypical profile that the 
model detected and used, with a high misclassification frequency in 
participants who defied this profile. For example, in CCP, an increased 
amount of education was associated with an increased mean score 
on the neurocognitive battery (rs = 0.48, P < 0.0001, FDR adjusted; 
Fig. 4b). Correspondingly, individuals with low neurocognitive scores 
and high education, or with high scores and low education, were fre-
quently misclassified. In keeping with this stereotype-defying profile, 
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Fig. 4 | Frequently misclassified participants defy stereotypical profiles. 
a,b, Data are shown for all covariates that were found to have significant 
pairwise relationships with misclassification frequency by two-tailed rank 
correlation and Mann–Whitney U test. a, Relationship with misclassification 
frequency, averaged separately across measures on which participants  
scored high (‘high scorer’) and low (‘low scorer’). *Significant (P < 0.05) in 
corresponding full regression of low- or high-scorer misclassification 
frequency on these covariates. b, Relationship with mean scores, averaged 
separately across measures on which participants were frequently correctly 

(top) and incorrectly (bottom) classified. *Significant (P < 0.05) in full 
regression of mean (correct or misclassified) score on these covariates. Lines 
and shading: best-fit line from simple linear regression with 95% confidence 
bands. Violin plot lines represent median and quartiles. Box plot centre line and 
hinges represent median and quartiles, respectively; whiskers extend to most 
extreme non-outliers. All reported P values FDR adjusted (a, 30 tests; b: 8 tests). 
See Supplementary Tables 9 and 10 for relationships between misclassification 
frequency, mean score and all tested covariates, as well as sample sizes. RG, 
racialized groups.
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the relationship between education and mean score was substantially 
diminished among MCP, and the relationships between mean score 
and age, race and motion—all significant in CCP (Fig. 4b, ‘Correct’)—
were abolished in MCP (Fig. 4b, ‘Misclassified’). Together, these results 
suggest that models reflect stereotypical demographic profiles of 
high and low scorers that, when violated, result in misclassifications.

Trends in the UCLA and HCP data using comparable, available covari-
ates are similar (Extended Data Figs. 2e and 3e and Supplementary 
Figs. 3 and 4). Notably, in the UCLA sample, self-reported symptom 
severity and use of psychiatric medication were related to misclassi-
fication frequency (Supplementary Table 9), and low scorers who did 
not have a mental health diagnosis (assessed by diagnostic interview) 
were slightly, although not significantly, more likely to be misclassi-
fied than low scorers who did (misclassification frequency median 
difference = 0.25, P = 0.07). Symptom severity, medication status and 
diagnosis in Yale and UCLA datasets were in many cases related to 
mean score in CCP, with illness tracking worse performance (Supple-
mentary Table 10). There was no evidence of a relationship between 
symptom severity and mean score in the HCP sample (both P > 0.1; 
Supplementary Table 10), which focused recruitment on healthy indi-
viduals. Together, these results reflect both the potential relevance 
of mental illness to stereotypical profiles and misclassification fre-
quency, and the dataset-specificity of these profiles and who defies 
them (see ‘Causes and implications of model failure’, below). Relation-
ships between misclassification frequency, mean score and all tested 
covariates are presented in Supplementary Tables 9 and 10.

Finally, we considered two additional questions raised by these find-
ings. First, we compared the FC patterns of CCP and MCP groups to 
identify any group differences in functional brain organization that 
may explain misclassification. We found no consistent differences 
between groups at either the edge or the network levels (Extended Data 
Fig. 5). Second, these findings raise the concern that models reflect only 
demographic and clinical variables, not the neurocognitive constructs 
of interest. To investigate this, we regressed GFC edge summary scores 
on phenotypic scores and covariates. In all cases, the full model was 
preferred to a reduced model that included only score (all P < 0.0005 
by extra sum-of-squares F-test). Score was in most cases significantly 
associated with edge summary score after controlling for all covariates, 
and covariates associated with edge summary score were, as expected, 
highly overlapping with those that track misclassification frequency 
(Extended Data Table 1).

Causes and implications of model failure
In this work, we interrogate model failure to better understand group 
differences in brain–phenotype relationships. Across three datasets, 
a wide range of predicted measures and various analysis approaches, 
we find notably consistent results: model failure occurs reliably in a 
subset of individuals, generalizes across phenotypic measures and 
datasets and is associated with phenotype scores that do not fit the 
sample’s stereotypical profile for high and low scorers.

Together, these results show that one model does not fit all; model 
failure identifies subgroups that require distinct predictive models 
(see ‘Model failure as a tool for subtyping’ in  Supplementary Discus-
sion). Furthermore, they show us that we are often predicting not 
unitary outcomes, but rather outcomes of interest intertwined with 
constellations of covariates. This is crucial to acknowledge, both 
because these stereotypical profiles can teach us about the predicted 
construct and its potential biases, and because these profiles have 
practical and conceptual implications for model generalizability (ste-
reotypes, and thus models, do not fit all individuals) and model inter-
pretation (identified brain activity patterns may represent elements 
or consequences of this profile, not the phenotype of interest, per se). 
Model failure is thus inextricably intertwined with biases in input data, 
and these issues must be jointly addressed if brain–phenotype models 

are to yield useful neuroscientific and clinical insights. We turn next 
to a discussion of these points, and close with a proposed framework 
for future work.

Models predict complex score profiles
Our results suggest that brain activity-based models are often pre-
dicting complex profiles rather than unitary cognitive processes, 
highlighting the need to consider these profiles and the influence of 
sample representation on them. For example, a sample of same-age 
individuals would not demonstrate a relationship between age and 
performance, whereas targeted recruitment of groups with distinct 
medical health histories may render this variable relevant to perfor-
mance and misclassification. In keeping with this intuition, the HCP 
sample, which selectively recruited healthy individuals, did not show 
a relationship between psychopathology and test performance, a 
relationship that exists in both the Yale and the UCLA samples.

Other effects of sample representation on phenotypic score profiles 
are suggested by many intersecting literatures. Cultural influences on 
task strategies and test performance are well documented43,44, and 
neuropsychological test performance differs by factors such as life 
course epidemiology, education quality, acculturation and physical 
health45–47. Many tests are thus composite measures20, and it is these 
composites that our models are predicting.

Furthermore, relationships between covariates and the outcome of 
interest may be complex, and differentially affect brain–phenotype 
relationships (see ‘Covariate–outcome relationships may be varied 
and complex’ in  Supplementary Discussion). Verbal memory offers 
an illustrative example of group differences in covariate–outcome 
relationships and a use-case for the utility of subgroup-specific mod-
elling. In native English speakers, the articulation rate of subvocal 
rehearsal tracks digit and word span performance. This relationship 
is substantially attenuated in native Mandarin speakers, who also 
perform better overall than English speakers on the task48. Together, 
these findings suggest that there is a meaningful difference in the 
cognitive processes that are associated with verbal memory across 
cultural groups. To account for this, brain–verbal memory model-
lers may build separate models for these groups. This would be likely 
to increase model performance for each group, consistent with our 
results (Fig. 3) and with the previous finding that matching training 
and test data for confounding relationships maximizes classification 
accuracy49. It would also reveal whether these group-specific models 
track distinct processes (that is, neural correlates of articulation rate 
in English speakers, and of other factors—such as nonverbal rehearsal 
processes or increased capacity of the phonological store—in Man-
darin speakers48). By situating the interpretation of verbal memory 
test scores—and of corresponding brain-based predictive models—in 
the context of this existing literature, more appropriate models may 
be built for each group and a more nuanced interpretation of these 
models achieved.

The existence of factors that track performance in one group but 
not in another is consistent with our finding that, overall, the same 
covariates that track misclassification also track score in CCP but not 
in MCP. Because models are predicting profiles of which these covari-
ates are a part, individuals who defy the profile will require a different 
brain–phenotype model. In all three studied samples, for example, 
individuals with more education tended to score higher on neurocogni-
tive tests, but this correlation was not perfect. A substantial number of 
individuals with low education scored high, and vice versa, and these 
individuals were frequently misclassified in the Yale and HCP samples 
(Fig. 4a, Extended Data Fig. 3e and Supplementary Tables 9 and 10). The 
observation of this pattern in both the clinically heterogeneous Yale and 
healthy HCP samples suggests that it cannot be exclusively explained 
by disease processes. These cases thus present an opportunity to study 
potential correlates of resilience, obstacles to performance and alter-
native cognitive strategies.
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Equally important and not mutually exclusive is the opportunity to 

use such cases, and the profiles they defy, to explore sources of bias 
encoded in input data. That is, if test scores are themselves biased, 
the models may be as well. Such model bias has been described in 
applications of machine learning algorithms ranging from criminal 
justice35,36 to healthcare37,38. Care must be taken to interpret results 
accordingly. For example, African American and Hispanic or Latino 
American individuals tend to score lower than white Americans with-
out Hispanic or Latino ancestry on neuropsychological tests46. These 
group differences are complex, often reductionist and non-causal; 
efforts to explain them have focused on differences in factors such as 
education quality50, acculturation47, neighbourhood disadvantage51 
and research methodology18,52. Although consensus causal expla-
nations remain an open question, the pervasiveness of such bias in 
commonly used phenotypic measures18,20 is a call to action to carefully 
consider what brain-based models are truly predicting. Indeed, race 
tracked neuropsychological test performance in all three studied 
samples. And despite the fact that our models had no access to infor-
mation about race, race was related to misclassification frequency 
in the Yale and HCP samples, such that high-scoring participants 
who identify with racialized groups (see Methods) were frequently 
misclassified as low scoring, and vice versa for white participants. 
This finding is reminiscent of the errors made by the Correctional 
Offender Management Profiling for Alternative Sanctions (COMPAS, 
now ‘Equivant’) system36 and of recent evidence for ‘prediction shift’ 
in African American individuals14.

We seek to avoid overinterpretation of these findings and note 
again that race is a non-causal, non-biological proxy for unmeasured 
variables that obscures much heterogeneity in these samples (see 
‘Additional limitations and future directions’ in Supplementary Dis-
cussion). What our results do reveal is unintended and easily missed 
bias in both model inputs (that is, phenotypic measures limited by 
available assessment tools18,20, such as those comprising the NIH Tool-
box53,54) and model outputs (that is, the profiles to which models 
correspond). This bias matters for two reasons: (1) it may yield the 
right predictions for the wrong reasons; researchers may interpret 
the model as the neural representation of a unitary phenotypic con-
struct or may acknowledge the role of covariates but wrongly assume 
causality; and (2) it determines the limits of model generalizability, 
which in turn guide the practical applications of the models. Given, 
as we demonstrate, that models represent a composite profile, and 
that model generalizability will be limited to the group that fits this 
profile, it is critical for modellers to characterize these stereotypical 
profiles in their samples along multiple and intersecting dimensions 
(see specific recommendations in ‘Limitations and future directions’, 
below).

Macroscale circuits associated with phenotypes
Notably, we show that misclassified individuals—those who defy the 
consensus score profile—do not have a distinct brain organization; 
rather, it is the relationship between brain and phenotype that differs 
between CCP and MCP. Specifically, MCP do not require an entirely 
distinct model to classify their phenotypes. This finding ran contrary 
to our expectation that edges relevant to phenotype in CCP would not 
be systematically related to phenotype in MCP, and that misclassifi-
cation would thus identify groups with a different macroscale neural 
circuitry underlying a given phenotype. Rather, MCP positively cor-
related edges overlap significantly with CCP negatively correlated 
edges and vice versa, and simply inverting the model trained on one 
group yielded successful classification of the other, suggesting a 
stereotype-based ingroup–outgroup dichotomy for each model. It 
is possible, however, that in a more demographically homogeneous 
sample, the influence of these stereotypical profiles would be mini-
mized and more nuanced group differences in phenotype-relevant 
circuitry would be observable.

In addition, we do not seek to suggest that these predictive models 
reflect only a constellation of covariates; there is likely to be variance in 
phenotype and shared variance between brain and phenotype that are 
attributable to the cognitive processes of interest. Indeed, there is an 
extensive psychometric literature describing the construct validity of 
neuropsychological measures55, and several recent studies have dem-
onstrated the phenotypic specificity of FC-based predictive models8,56. 
In the Yale, UCLA and HCP data, even after controlling for all included 
covariates, the relationship between brain and phenotype remained 
significant in most cases (Extended Data Table 1). The macroscale cir-
cuits revealed by FC-based predictive modelling can thus be interpreted 
as the neural representation of a complicated mixture of the construct 
of interest and a range of sample-dependent demographic and clinical 
variables.

Limitations and future directions
Disentangling these relationships presents an important and broad 
opportunity for future research. These issues are relevant to work that 
relates neural and phenotypic data at all levels of analysis, and thus will 
not be limited to human neuroscience; as individual differences gain 
increasing attention in cellular and systems neuroscience57, precise 
phenotypic characterization and model interpretation will be para-
mount. Our results thus encourage each modeller to collect the data 
necessary to identify and, to the extent possible, correct stereotypical 
profiles for a given phenotype in their sample.

Doing so must begin with study design. Given the importance of 
sociodemographic and clinical covariates to brain–phenotype model-
ling analyses, future work should further characterize score profiles, 
looking to best-practice guidelines to collect more expansive and 
inclusive demographic data58, increase the enrolment of underrepre-
sented groups and exchange proxies such as race for more meaningful 
causal or explanatory variables59–64 (see ‘Additional limitations and 
future directions’ in Supplementary Discussion for more on the use 
and characterization of race in this work). In the service of result gen-
eralizability and as a proof of principle, we present the covariates that 
are related to model failure across all studied phenotypic measures, 
but such future work will permit the identification of more precise 
and phenotype-specific stereotypical profiles (‘Additional limita-
tions and future directions’ in Supplementary Discussion). In parallel, 
phenotypic measures must be carefully selected and administered 
to maximize their validity18,52. These choices may be guided by tools 
to evaluate the risk of bias in study design (for example, PROBAST, 
Step 365).

Then, once data are collected, they must be used. That is, model-
ling analyses must be adapted to ask what combination of factors our 
outcome of interest measures, and how we can interpret related pat-
terns of brain activity. First, statistical tools may be used to isolate, to 
the extent possible, the phenotype of interest. When standardizing 
phenotypic measures, norms should be carefully considered to ensure 
appropriateness (for example, for the NIH Toolbox66,67, but see refs. 53,54).  
Furthermore, data may be corrected for identified confounds. Many 
approaches to confound correction rely on the assumption that a sin-
gle covariate–outcome relationship holds for all individuals in the 
sample. If this is not the case, as we show here, then such correction 
will fail, and may even induce a confounding relationship where in 
truth none exists68. To address this issue, more sophisticated cor-
rection approaches that account for sample-specific stereotypes 
will be necessary (for example, the use of crossed-term confounds, 
confound-based sample splitting68, inverse probability weighting69 
or post-hoc confound control70). Inevitably, however, confounds will 
remain. It is incumbent on the modeller to use the previously collected, 
comprehensive sociodemographic data to precisely characterize these 
persistent confounds and interpret resulting models accordingly: as 
group-specific neural representations of composite phenotypes. See 
Extended Data Fig. 6 for a summary of these steps.
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To ignore these issues is to risk missing structured model failure, and 
the development of models that only apply to a specific—but unchar-
acterized—slice of the population. Only by integrating standard model 
evaluation criteria (for example, accuracy, sensitivity and specificity) 
with more thorough investigations of model failure can we hope to 
define the population to which each model generalizes71 and move away 
from the limitations of a one-size-fits-all approach. That models pick 
up on and use stereotypical profiles is not always, in itself, a problem 
for data-driven studies of brain–phenotype relationships. However, we 
must characterize these profiles to identify potentially harmful biases 
and to know whether and how a given model applies to the individual 
sitting before us. Doing so opens a world of possible applications for 
brain-based predictive models, chief among them the identification 
of neuromarkers that both shed light on the biological basis of disease 
and guide intervention.
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Methods

Datasets
Three datasets were used in these analyses. Primary analyses use data 
collected at Yale from February 2018–March 2021, and external vali-
dation analyses use the UCLA Consortium for Neuropsychiatric Phe-
nomics (CNP)17, which is of comparable size to the Yale dataset and 
includes individuals with mental health diagnoses, and the Human 
Connectome Project (HCP)16, which includes only healthy participants 
and is substantially larger (thus addressing concerns about mean and 
variance of predictive model accuracy in small samples74,75; although 
it is still not as large as samples called for in recent work27, we note that 
the concerns raised in that study are not directly relevant to our work, 
as the former focuses on within-sample brain–phenotype associa-
tions, whereas our analyses rely exclusively on prediction, presenting 
brain–phenotype relationships that generalize to unseen data). Each 
dataset is described below, with demographic and clinical information 
for each reported in Supplementary Table 3 and Extended Data Fig. 7. 
Together, these datasets comprise nearly 1,000 individuals, and each 
is of comparable size to or larger than datasets that are commonly used 
in brain–phenotype modelling work (for example, refs. 1,6,10).

Yale dataset. Participants completed an MRI scan followed by a 
post-scan neuropsychological and self-report battery; the scan and 
post-scan battery were each approximately 2 h in length, and, to cover 
a broad cognitive landscape, were designed to correspond to Research 
Domain Criteria (RDoC)76 domains and constructs (Supplementary 
Tables 1 and 2).

Yale imaging parameters, study design and preprocessing. All im-
aging data were acquired on three harmonized Siemens 3T Prisma 
scanners with a 64-channel head coil at the Yale Magnetic Resonance 
Research Center. For alignment to common space, a high-resolution 
T1-weighted three-dimensional anatomical scan was acquired us-
ing a magnetization-prepared rapid acquisition with gradient-echo 
(MPRAGE) sequence (208 slices acquired in the sagittal plane, rep-
etition time (TR) = 2,400 ms, echo time (TE) = 1.22 ms, flip angle = 8°, 
slice thickness = 1 mm, in-plane resolution = 1 mm × 1 mm). Functional 
data were acquired using a multiband gradient-echo-planar imaging 
(EPI) sequence (75 slices acquired in the axial-oblique plane parallel to 
the AC–PC line, TR = 1,000 ms, TE = 30 ms, flip angle = 55°, slice thick-
ness = 2 mm, multiband factor = 5, in-plane resolution = 2 mm × 2 mm).

Participants completed eight functional scans—two resting-state 
runs and six task runs—each 6 min, 49 s long (including an initial shim). 
The first and last functional scans were resting-state runs; participants 
were asked to rest with their eyes open, and a fixation cross was dis-
played. Participants completed each of the six tasks during the remain-
ing runs, with task order counterbalanced across participants. Tasks 
were presented using Psychtoolbox-377.

For a detailed description of the design of each task, see Supplemen-
tary Table 1 and previously published work78. In brief, the tasks included 
adaptations of: (1) 2-back79 (working memory; adapted from a previous 
study80; one block of scene stimuli and one block of emotional face 
stimuli81,82); (2) stop signal (response inhibition)83; (3) card guessing 
(reward)84,85; (4) gradual-onset continuous performance (gradCPT; 
sustained attention)73; (5) reading the mind in the eyes (social)86; and (6) 
movie watching tasks. Each task, with the exception of movie watching, 
was preceded by instructions and practice, after which the participant 
had an opportunity to ask questions about the task. Responses were 
recorded on a 2 × 2 button box. A fixation cross was displayed between 
tasks.

After the scan, participants completed a battery of scales selected 
from extensively validated neuropsychological and self-report meas-
ures87–100 (Supplementary Table 2), as well as a structured diagnos-
tic interview101, all administered by research assistants and graduate 

students trained by a clinical neuropsychologist. All phenotypic data 
were hand-scored by two independent raters, and age-adjusted, 
normed neuropsychological test scores (IQ, scaled, T and z scores, 
as relevant), derived from corresponding test manuals, were used in 
subsequent analyses. Further demographic adjustments were not used 
given their variable availability and utility in a research setting18,54,102,103, 
but we note that such adjustments—which are often used in clinical 
settings—can increase sensitivity to neurocognitive deficits, control 
for variance associated with premorbid factors and improve per-
formance interpretation, making them an important area for future 
investigation, particularly in the study of acquired cognitive changes67 
(see ‘Limitations and future directions’ in ‘Causes and implications of 
model failure’). A small subset of participants was recruited for a related 
study of bipolar disorder; their study sessions were comparable with 
the exception of an additional in-scanner task (not included in these 
analyses) and the use of the Structured Clinical Interview for DSM-5104 
instead of the MINI.

Standard preprocessing procedures were applied to imaging data. 
Structural scans were skull stripped using an optimized version of the 
FMRIB’s Software Library (FSL)105 pipeline (optiBET)106. Motion correc-
tion was performed in SPM12107. Nonlinear registration of the MPRAGE 
to the MNI template was performed in BioImage Suite108, and linear 
registration of the functional to the structural images was performed 
using a combination of FSL and BioImage Suite linear registration tools 
to optimize registration quality. All additional preprocessing steps were 
performed in BioImage Suite, and included regression of mean time 
courses in white matter, cerebrospinal fluid and grey matter; high-pass 
filtering to correct linear, quadratic, and cubic drift; regression of 24 
motion parameters109; and low-pass filtering (Gaussian filter, σ = 1.55). 
All registered data were visually inspected to ensure whole-brain cover-
age, adequate registration and absence of anomalies, artefact or other 
data quality concern. Subsequent analyses and visualizations were 
performed in BioImage Suite, MATLAB (Mathworks), GraphPad Prism 
and R110 (packages: ggpairs111, corrplot112 and R.matlab113).

Yale participants. Participants were recruited through broadly distrib-
uted community advertisements and referrals from Yale clinics, with 
an emphasis on recruiting a clinically naturalistic and demographically 
diverse sample. That is, participants experienced a range of symptom 
severity and frequently had multiple psychiatric diagnoses, ages were 
distributed broadly across the lifespan and the sample was enriched for 
mental illness and identification with racialized groups (Supplemen-
tary Table 3 and Extended Data Fig. 7). Note that we use this phrase to 
describe participants who did not identify as white, in keeping with 
the literature describing ‘racialization’ as the process of categoriz-
ing, marginalizing, or regarding according to race with socialized 
tendencies to view white race as the default, and in recognition that 
such categorization is without meaningful biological distinction114. All 
participants provided written informed consent in accordance with a 
protocol approved by the Yale Institutional Review Board.

We restricted our analyses to those participants who completed 
all fMRI scans (six task, two rest), whose grand mean frame-to-frame 
displacement was less than 0.15 mm and whose maximum mean 
frame-to-frame displacement was less than 0.2 mm. Several addi-
tional participants were excluded because they were found to have 
an anatomical anomaly that interfered with registration or because of 
technical issues during their session that compromised data quality.  
Several participants did not complete all neuropsychological and 
demographic measures; they were included in the sample but excluded 
from specific analyses for which they were missing data. Similarly, for 
several participants, a slightly shorter protocol (25 s shorter than the 
standard protocol) was used for all or a subset of functional scans; given 
the known explanation for the missing time points, these participants 
were not excluded. In total, the sample includes 129 participants (Sup-
plementary Table 3 and Extended Data Fig. 7).
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CNP dataset, study design and preprocessing. Participants com-
pleted both resting-state and task-based fMRI scans, as well as an 
out-of-scanner battery of neurocognitive and self-report measures. 
In this study, we used imaging data from all cognitive tasks and rest, 
data from three of the out-of-scanner neurocognitive measures98 and 
sociodemographic and clinical covariates115,116. All data were accessed 
through OpenfMRI (accession number ds000030).

Details of the study design and in-scanner tasks are described in 
previously published work17. In brief, imaging data were acquired on 
two 3T Siemens Trio scanners. From the imaging data, as for the Yale 
data, we used the MPRAGE (176 slices acquired in the sagittal plane, 
TR = 1,900 ms, TE = 2.26 ms, slice thickness = 1 mm, field of view 
(FOV) = 250 mm, matrix size = 256 × 256) and EPI (34 slices acquired 
in the oblique plane, TR = 2,000 ms, TE = 30 ms, flip angle = 90°, slice 
thickness = 4 mm, FOV = 192 mm, matrix size = 64 × 64) scans.

In this work, we used fMRI data acquired during seven runs: eyes-open 
rest and six tasks performed over two, counterbalanced scan sessions. 
Runs varied in length. Cognitive tasks included: (1) balloon analogue 
risk task (BART); (2) paired-associate memory task (2 scans, one each 
for the encoding (PAMenc) and retrieval (PAMret) components of the 
task); (3) spatial working memory capacity (SCAP) task; (4) stop sig-
nal task (SST); and (5) task-switching (TS) task17. Participants received 
training on each task immediately before the scan. Responses were 
recorded on a button box.

Participants also underwent a neuropsychological and clinical assess-
ment. From these tests, we used three phenotypic measures that are the 
same as or comparable to measures used in the Yale dataset: WAIS-IV 
vocabulary, WAIS-IV matrix reasoning and WAIS-IV letter–number 
sequencing. Age-adjusted scaled scores obtained from the WAIS-IV 
manual were used for all analyses.

Preprocessing procedures were similar to those used on the Yale 
dataset (minor differences include use of SPM8 and the middle, rather 
than the first, scan as reference for motion correction; an earlier ver-
sion of the FSL and BioImage Suite linear registration protocol; and 
a Gaussian low-pass filter with σ = 1), and have been described previ-
ously9. All registered data were visually inspected to ensure whole-brain 
coverage, adequate registration and absence of anomalies, artefact or 
other data quality concern.

CNP participants. Participants were recruited through community 
advertisements and outreach to clinics; the sample was enriched for 
mental illness, with some comorbidities being grounds for exclusion17. 
All participants provided written informed consent consistent with 
procedures approved by the Institutional Review Boards at UCLA and 
the Los Angeles County Department of Mental Health. We restricted 
analyses to participants with complete rest, BART, PAMenc, PAMret, 
SCAP, SST and TS runs, with grand mean frame-to-frame displacement 
less than 0.15 mm and maximum mean frame-to-frame displacement 
less than 0.2 mm, and without nodes entirely lacking coverage (see 
‘Functional parcellation and network definition’), leaving a final sample 
of 163 participants (Supplementary Table 3 and Extended Data Fig. 7).

HCP dataset, study design and preprocessing. As in the Yale 
and UCLA datasets, participants completed both resting-state and 
task-based fMRI scans, as well as an out-of-scanner battery of neuro-
cognitive and self-report measures. In this study, we used imaging 
data from all tasks and rest, as well as summary scores from the NIH 
Toolbox assessments117, and sociodemographic and clinical covari-
ates matched, to the extent possible, to those used in primary analy-
ses95,117,118. All data were released as part of the HCP 900 Subjects release 
and are publicly available on the ConnectomeDB database (https://
db.humanconnectome.org).

Details of the study design, imaging protocol and in-scanner tasks 
have been extensively described16,119–121. In brief, all MRI data were 

acquired on a 3T Siemens Skyra using a slice-accelerated, multiband, 
gradient-echo, EPI sequence (72 slices acquired in the axial-oblique 
plane, TR = 720 ms, TE = 33.1 ms, flip angle = 52°, slice thickness = 2 mm, 
in-plane resolution = 2 mm × 2 mm, multiband factor = 8) and a MPRAGE 
(256 slices acquired in the sagittal plane, TR = 2,400 ms, TE = 2.14 ms, 
flip angle = 8°, slice thickness = 0.7 mm, in-plane resolution = 0.7 mm 
× 0.7 mm).

In total, 18 fMRI scans were conducted for each participant (working 
memory (WM) task, incentive processing (gambling) task, motor task, 
language processing task, social cognition task, relational process-
ing task, emotion processing task and two resting-state scans; two 
runs per condition (one left-to-right (LR) phase encoding run and one 
right-to-left (RL) phase encoding run))120,121 split between two sessions. 
Participants received instructions for each task outside of the scan-
ner, as well as a brief reminder of the task instructions and button box 
response mappings immediately prior to each task.

Participants also completed an extensive out-of-scanner battery, 
including most of the NIH Toolbox measures121. Given the lack of exact 
correspondence between the NIH Toolbox and the neuropsychological 
tests used in the Yale and UCLA datasets, we used the Toolbox compos-
ite age-adjusted scaled scores (variables: CogFluidComp_AgeAdj and 
CogCrystalComp_AgeAdj), corresponding broadly to fluid cognitive 
functions and verbal reasoning, respectively.

Preprocessing procedures have been described previously24. The 
HCP minimal preprocessing pipeline was used on these data122, which 
includes artefact removal, motion correction and registration to stand-
ard space. All subsequent preprocessing was performed in BioImage 
Suite108 and included standard preprocessing procedures1, including 
removal of motion-related components of the signal; regression of 
mean time courses in white matter, cerebrospinal fluid and grey matter; 
removal of the linear trend; and low-pass filtering. Mean frame-to-frame 
displacement was averaged for the LR and RL runs, yielding nine motion 
values per participant; these were used for participant exclusion and 
motion analyses.

HCP participants. Participants were recruited from families containing 
twins in Missouri. Participants were healthy, broadly defined, and reflec-
tive of the ethnic and racial composition of the USA as documented in 
the 2000 Census16. The scanning protocol (as well as procedures for 
obtaining informed consent from all participants) was approved by 
the Institutional Review Board at Washington University in St Louis. 
We restricted analyses to participants with complete rest and task 
runs, with complete zygosity data (necessary to respect family-related 
limits on exchangeability for permutation testing40,41), with grand mean 
frame-to-frame displacement less than 0.15 mm and maximum mean 
frame-to-frame displacement less than 0.2 mm, and without nodes 
entirely lacking coverage. We further excluded participants with identi-
fied quality control issues B–D or other major issues described on the 
HCP wiki as of October 2021 (for example, RL runs processed with the 
incorrect phase encoding direction), or who failed preprocessing, 
leaving a final sample of 664 participants (Supplementary Table 3 and 
Extended Data Fig. 7).

Functional parcellation and network definition
The Shen 268-node atlas derived from an independent dataset using a 
group-wise spectral clustering algorithm123 was applied1 to the preproc-
essed Yale, UCLA and HCP data. After parcellating the data into 268, 
functionally coherent nodes, the mean time courses of each node pair 
were correlated and correlation coefficients were Fisher transformed, 
generating eight 268 × 268 connectivity matrices per Yale participant, 
seven 268 × 268 connectivity matrices per UCLA participant (one per 
fMRI run), and nine 268 × 268 connectivity matrices per HCP partici-
pant (averaged across RL and LR runs for each in-scanner condition).

To ensure that results are robust to parcellation choice, we repeated 
analyses using the Shen 368-node atlas, derived using a combined 
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approach: data-driven parcellation of cortical areas, anatomic delinea-
tion of subcortical regions and a cerebellum parcellation based on the 
Yeo 17-network parcellation124 (Extended Data Fig. 1).

Phenotype classification
A modified version of connectome-based predictive modelling25—which 
crucially tests models on previously unseen data (unlike explanatory 
models13,15)—was used to classify phenotypic scores as high or low using 
FC. First, phenotypic scores were binarized to generate unambiguous 
classification outcomes and avoid common sources of bias in compari-
sons of observed and predicted outcomes125. To ensure that all partici-
pants understood and performed the neurocognitive tests as intended, 
we used normative means and standard deviations for each measure 
to exclude outlier extremely low scorers (score ≤ mean – 3 × s.d.)126, as 
is common and recommended practice127–129. Scores less than or equal 
to the normative mean – 1/3 × s.d. were considered low (label = −1); 
scores greater than or equal to the normative mean + 1/3 × s.d. were 
considered high (label = 1); thresholds were rounded as relevant. To 
ensure that results are robust to this thresholding choice, we repeated 
analyses using the normative mean as the cut-off (that is, high if greater 
than mean; low if less than mean). For results, see Extended Data Fig. 1 
(‘Phenotype mean split’). Leave-one-out cross-validation was used, 
such that one participant was left out as test data and training data 
were selected from the remaining participants (for results using 10-fold 
cross-validation, see Extended Data Figs. 1 and 3). Only high and low 
scorers were classified, and from the training set, only high and low 
scorers were considered. From that subset, the larger class was pseudor-
andomly undersampled to enforce balanced classes15, and the resulting 
subset was used to train the classifier.

To do so, each edge across all training participants was correlated 
with their labels for the given phenotypic measure. Using a significance 
threshold (P < 0.05, uncorrected25), two sets of edges were selected—
one positively correlated with labels, and one negatively correlated 
with labels. Those edges were separately summed to derive two edge 
summary scores for each training participant, one each for the posi-
tively and negatively correlated edge sets. These scores were in turn 
normalized (z-scored) and submitted to a linear SVM to classify low 
versus high scores in the training set. Selected positively and negatively 
correlated edges were then summed and normalized in the test data, 
and the trained classifier was applied to these scores to classify the 
test participant(s) as high or low scoring. To ensure that results are 
robust to classification algorithm, we repeated these analyses using 
two additional, commonly used algorithms for supervised learning 
that, together with linear SVM and linear regression (see below), reflect 
the full range of model interpretability and complexity130: an ensemble 
of weak learners and a fully connected neural network, both imple-
mented in MATLAB (Mathworks). In both cases, we used a subset of 
phenotypic measures for hyperparameter optimization (ensemble 
learners: ensemble aggregation method, number of learners, learning 
rate (where relevant) and minimum leaf size; neural network: activa-
tion functions, standardization, regularization term strength and layer 
sizes). We used all available high and low scorers’ GFC and phenotypic 
data, undersampled to balance class size, in a leave-one-out manner 
for each optimization analysis, and used the best consensus hyperpa-
rameters (ensemble learners: method = bagging, number of learners = 
150, minimum leaf size = 1; neural network: activation function = none; 
standardization = true; lambda = 1.34 × 10−5; layer sizes = 8, 200 and 8)  
to classify all 16 phenotypic measures as in main analyses, using all 
selected edges (correlation P < 0.05, as in main analyses) as features. 
See Extended Data Fig. 1 for results.

Test participants were considered misclassified (MCP) versus cor-
rectly classified (CCP) if their predicted label did not match their 
observed label. Classification was repeated iteratively, with each partici-
pant excluded once, and overall accuracy was calculated as the number 
of correctly classified participants divided by the number of classified 

participants. Accuracy was also calculated separately for high and low 
scorers to show that performance was comparable in both groups.

This process was repeated 100 times, with distinct subsampling on 
each iteration (for 10-fold analyses, 50 iterations of subsampling were 
performed for each 10-fold partition with 20 partitions, yielding 1,000 
iterations). The entire pipeline was repeated for every combination of 
in-scanner condition (rest, tasks and GFC42 (without regression of task 
structure131)) and phenotypic measure.

The significance of classifier performance was assessed by 100 itera-
tions of permutation testing (or, in the case of HCP 10-fold analyses, 
1,000 iterations; see above). That is, the classification pipeline was 
repeated with one modification: high and low phenotypic scores were 
permuted on each iteration. Permutations were fixed across in-scanner 
conditions, and respected family-related limits on exchangeability for 
the HCP dataset40,41. P values were calculated as: Pi = #{ai,null ≥ ai,median} + 1/
(no. iters + 1), in which i indexes the phenotypic measure and ai is the 
classification accuracy for measure i, with #{ai,null ≥ ai,median} indicating 
the number of iterations on which the permutation-based classifiers 
performed as well as or better than the median accuracy of unpermuted 
data-based classifiers. The resulting P values were FDR adjusted for 
multiple comparisons (number of tests = number of phenotypic meas-
ures in the given dataset; one in-scanner condition per measure; for all 
conditions, see Supplementary Tables 4–6).

Finally, to ensure that dichotomization of continuous neuro-
cognitive scores did not bias results, leave-one-out cross-validated 
connectome-based predictive modelling was performed1,25, using FC 
from each in-scanner condition to predict performance on each of 
the 16 Yale phenotypic measures. The difference between predicted 
and observed scores was deconfounded by regressing it on observed 
scores125,132, and this residualized model fit metric, averaged across 
in-scanner conditions and phenotypic measures, was related to covari-
ates in place of mean misclassification frequency (see ‘Exploring con-
tributors to misclassification’). Results were comparable to those from 
main analyses and are presented in Supplementary Table 11.

Internal validation analyses
The consistency of MCP was explored at several levels of analysis. 
First, misclassification frequency for a given phenotypic measure and 
in-scanner condition was calculated for each classified participant as 
the number of misclassifications divided by the number of iterations. 
For each phenotypic measure, the original and permuted distributions 
of misclassification frequency, concatenated across all in-scanner 
conditions, were compared (Fig. 2a).

The results for each in-scanner condition were then examined 
separately by rank correlating misclassification frequency for each 
condition pair for a given phenotypic measure (Fig. 2b). Given the direc-
tional hypothesis, original and permuted correlations were compared 
by paired, one-tailed Wilcoxon signed-rank test; P values were FDR 
adjusted for multiple comparisons across the phenotypic measures 
(for example, 16 tests for the Yale dataset).

Finally, misclassification frequency across phenotypic measures was 
compared. To do so, misclassification frequency for a given in-scanner 
condition was rank correlated across phenotypic measures. The result-
ing phenotype × phenotype misclassification frequency correlation 
matrices were averaged across in-scanner conditions. Separately, nor-
med scores for each phenotype pair were rank correlated, yielding a 
phenotype × phenotype similarity matrix. The lower triangles of these 
matrices were plotted and rank correlated (Fig. 2c), and misclassifica-
tion frequency correlations were submitted to a hierarchical clustering 
algorithm (single linkage), with distance = 1 − corr (Fig. 2d). In all cases, 
NaN values (that is, participants with intermediate (not labelled high 
or low), low outlier, or missing scores on the relevant measures) were 
excluded.

Results were replicated in the UCLA and HCP datasets, as relevant 
(Extended Data Figs. 2 and 3).
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Cross-dataset analysis
To explore the generalizability of misclassification, the classification 
analysis was adapted such that one dataset was used to train the clas-
sifier, and another to test it. In primary analyses using the Yale and 
UCLA datasets, letter–number, vocabulary and matrix reasoning tests 
were used as phenotypic measures because they represent relatively 
distinct cognitive domains and are included in both datasets. GFC 
was used given the in-scanner task differences across datasets. As 
described previously (‘Phenotype classification’), low outlier scores 
were excluded, normed phenotypic scores were binarized and training 
data were subsampled to ensure balanced classes. For each pheno-
typic measure, six models were trained using (1) all UCLA high and 
low scorers; (2) only CCP UCLA high and low scorers; (3) only MCP 
UCLA high and low scorers; (4) all Yale high and low scorers; (5) only 
CCP Yale high and low scorers; and (6) only MCP Yale high and low 
scorers. Correct and misclassified participant sets were derived from 
the GFC-based iteration with the median classification accuracy for 
the given phenotypic measure (ties settled by maximum correlation 
with relevant misclassification frequency). In each case, edges were 
selected on the basis of their correlation with binarized phenotype, and 
a sparsity threshold was used to facilitate comparison across models 
given differing sample sizes (that is, 500 most correlated edges; 500 
most anticorrelated edges). As before, edge strengths were summed 
and normalized, and the resulting summary scores were submitted to 
a linear SVM. Trained models 1–3 were applied to all Yale high and low 
scorers; models 4–6 were applied to all UCLA high and low scorers. As 
in within-dataset analyses, given subsampling to balance classes, each 
analysis was repeated 100 times with different subsamples. Results are 
presented as the mean (across 100 iterations) fraction of the whole 
sample that was correctly classified by each model, the mean fraction 
of each CCP group that was correctly classified (Test: Correct) by each 
model and the mean fraction of each MCP group that was correctly 
classified (Test: Misclassified) by each model (Fig. 3a). Within each 
category (for example, Train: All/Test: All, Train: Correct/Test: Correct, 
Train: Correct/Test: Misclassified, and so on), a nested ANOVA was 
used to compare means to chance (mean accuracy for correspond-
ing analyses using permuted phenotypic data), and P values were 
FDR adjusted across the nine result categories (an adjustment that 
we note is complicated by the non-independence of the test sets, but 
which we use as a more conservative estimate of significance than 
uncorrected P values). Each model’s performance was also tested 
for significance using permutation tests (Supplementary Table 8), 
and group-specific (CCP- and MCP-based) model performance was 
compared to whole-sample-based model performance by paired, 
one-tailed Wilcoxon signed-rank test, given the directional hypothesis 
that group-specific models outperform whole-sample models.

Edges selected on 75–100% of iterations were compared by Jaccard 
distance (Fig. 3b) and visualized using BioImage Suite (edges inci-
dent to the highest-degree node for each model; illustrative exam-
ple: Fig. 3c; all cross-dataset models: Extended Data Fig. 4). The above 
approach for identifying CCP and MCP groups was also used to explore 
between-group differences in FC in the Yale sample at the edge (by 
two-sample t-test) and network (by the constrained network-based 
statistic133) levels (Extended Data Fig. 5). Cross-dataset classification 
results were replicated using the Yale and HCP datasets (vocabulary/
cIQ and matrix reasoning/fIQ measures; Extended Data Fig. 3d and 
Supplementary Table 8).

Exploring contributors to misclassification
To characterize frequently misclassified participants and better 
understand why they are misclassified, we related 12 covariates 
(sex, age, self-reported race (binarized given limited sample size, 
with ‘white’ indicating that this category was selected as the par-
ticipant’s only racial group; see ‘Additional limitations and future 

directions’ in  Supplementary Discussion), years of education, 
self-reported psychiatric symptoms (through the Brief Symptom 
Inventory92 global severity index), self-reported stress (through the 
Perceived Stress Scale93), self-reported sleep disturbance (through the 
Pittsburgh Sleep Quality Index95 global score), self-reported positive 
and negative affect (through the Positive and Negative Affect Sched-
ule94), presence or absence of mental health diagnosis (ascertained 
by diagnostic interview), use of one or more psychiatric medications 
(antidepressant, mood stabilizer, antipsychotic, stimulant, or benzodi-
azepine or other sedative) and grand mean in-scanner frame-to-frame 
displacement), along with overall cognitive performance (by princi-
pal component analysis on phenotypic scores; top three principal 
components (PCs) retained given cumulative variance explained), 
to misclassification frequency, averaged separately for measures on 
which participants scored high and low. These covariates reflect key 
demographic features of participants, as well as a range of clinically 
relevant information. For the latter, we complemented an extensively 
validated structured diagnostic interview for the major DSM-5 disor-
ders101 with self-report measures that reflect participants’ lived experi-
ences with mental health concerns (for example, sleep disturbance and 
perceived stress—both common experiences that transcend diagnostic 
boundaries134–137). Relationships between covariates are presented in 
Supplementary Fig. 2.

For binary covariates (sex, race, diagnosis and medication), 
two-tailed Mann–Whitney U tests were used to compare misclassifi-
cation frequency in the two groups. The remaining continuous covari-
ates were rank correlated with misclassification frequency. This was 
repeated for high- and low-score misclassification frequency. P values 
were FDR adjusted, with number of tests = 2 × number of covariates (for 
example, 30 tests in the Yale dataset). Results for covariates signifi-
cantly related to misclassification frequency are presented in the main 
text and figures; full results are presented in Supplementary Table 9.

To further explore these relationships, these covariates (excluding 
score PCs) were related (again by two-tailed Mann–Whitney U test and 
Spearman correlation) to mean phenotypic scores, z-scored within 
measure and averaged across measures on which each participant 
was frequently (50% or more of iterations and conditions) and infre-
quently (less than 50%) misclassified. All P values were FDR adjusted 
for multiple comparisons. Results and multiple comparison correction 
for covariates significantly related to misclassification frequency are 
presented in the main text and figures; full results are presented in 
Supplementary Table 10.

For additional insight into relationships among covariates, pheno-
type and misclassification frequency, covariates that were significantly 
related to misclassification frequency were entered into regressions 
of misclassification frequency on covariates (separately for high and 
low scores) and of mean phenotypic score on covariates (separately 
for frequently and infrequently misclassified groups).

These analyses were repeated in the UCLA and HCP datasets using 
comparable measures where available (HCP: symptom severity through 
the Achenbach Adult Self-Report, stress through the NIH Toolbox 
perceived stress survey and positive affect through the NIH Toolbox 
positive affect survey; UCLA: symptom severity through the Hopkins 
Symptom Checklist and diagnosis through the Structured Clinical 
Interview for DSM-IV). Relationships between covariates are presented 
in Supplementary Figs. 3 and 4, and results of these analyses are pre-
sented in Extended Data Figs. 2e and 3e.

Finally, to investigate whether models reflect any information beyond 
these covariates, we regressed the difference between positive and 
negative GFC edge summary scores for a given modelled phenotype 
(see ‘Phenotype classification’) on scores for that phenotypic meas-
ure, as well as all of the demographic and clinical covariates that were 
used for that dataset. We performed this analysis using the CCP-based 
models from each dataset (for Yale data, which were involved in two 
cross-dataset analyses, Yale–UCLA models were used), for all classified 



phenotypes in cross-dataset analyses, using edges that were selected 
on at least 75% of iterations. The results are presented in Extended 
Data Table 1.

Investigating potential confounds
Given the known effects of head motion on FC estimates138,139 and our 
finding that head motion was significantly correlated with misclas-
sification frequency (Supplementary Table 9), we repeated the main 
classification analyses (see ‘Phenotype classification’) after regressing 
mean frame-to-frame displacement out of each edge in the training 
set. The resulting residualized edges were used for model training, 
and corresponding regression coefficients were used to residualize 
the test participant’s edges before model testing. The misclassifica-
tion frequency for a given condition–phenotype combination was 
calculated as described previously, and correlated with the misclas-
sification frequency derived from raw functional-connectivity-based 
classification (Supplementary Fig. 1).

Statistical analysis
All analyses of preprocessed data were performed in BioImage Suite, 
MATLAB versions 2017a, 2018a and 2021b (Mathworks), R v.3.6.0 for 
macOS and GraphPad Prism v.9.0.1 for macOS. All statistical tests are 
named and described with corresponding results, and sample sizes—
which differ for each phenotypic measure given exclusions (for outlier, 
missing and intermediate scores)—are noted where relevant (supple-
mentary tables and figure legends). For the main classification analyses, 
significance was assessed by nonparametric permutation tests. Where 
relevant, P values were adjusted for multiple comparisons using the 
false discovery rate. Significance testing is described and reported, 
along with the number of comparisons for correction, with the cor-
responding methods and results.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
The primary dataset used in these analyses represents the first set of 
participants in an ongoing study. Data will be released in waves through 
the NIMH Data Archive, Collection 3276 (https://nda.nih.gov/edit_ 
collection.html?id=3276). The UCLA CNP data can be obtained  
from the OpenfMRI database (https://openfmri.org/dataset/
ds000030/). The HCP data are publicly available on the Connec-
tomeDB database (https://db.humanconnectome.org/app/template/
Login.vm). Data used to generate the parcellation can be found at  
http://fcon_1000.projects.nitrc.org/indi/retro/yale_hires.html. Source 
data are provided with this paper.

Code availability
MATLAB code to run classification, validation and covariate analyses is 
available at https://github.com/abigailsgreene/modelFailure/. BioIm-
age Suite tools used for analysis and visualization can be accessed at 
https://bioimagesuiteweb.github.io/webapp/.
 
74.	 Cui, Z. & Gong, G. The effect of machine learning regression algorithms and sample size 

on individualized behavioral prediction with functional connectivity features. 
Neuroimage 178, 622–637 (2018).

75.	 Varoquaux, G. Cross-validation failure: small sample sizes lead to large error bars. 
Neuroimage 180, 68–77 (2018).

76.	 Insel, T. et al. Research Domain Criteria (RDoC): toward a new classification framework for 
research on mental disorders. Am. J. Psychiatry 167, 748–751 (2010).

77.	 Brainard, D. H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997).
78.	 Salehi, M. et al. There is no single functional atlas even for a single individual: functional 

parcel definitions change with task. Neuroimage 208, 116366 (2020).
79.	 Gevins, A. S. et al. Effects of prolonged mental work on functional brain topography. 

Electroencephalogr. Clin. Neurophysiol. 76, 339–350 (1990).

80.	 Rosenberg, M. D., Finn, E. S., Constable, R. T. & Chun, M. M. Predicting 
moment-to-moment attentional state. Neuroimage 114, 249–256 (2015).

81.	 Conley, M. I. et al. The racially diverse affective expression (RADIATE) face stimulus set. 
Psychiatry Res. 270, 1059–1067 (2018).

82.	 Tottenham, N. et al. The NimStim set of facial expressions: judgments from untrained 
research participants. Psychiatry Res. 168, 242–249 (2009).

83.	 Verbruggen, F., Logan, G. D. & Stevens, M. A. STOP-IT: Windows executable software for 
the stop-signal paradigm. Behav. Res. Methods 40, 479–483 (2008).

84.	 Delgado, M. R., Nystrom, L. E., Fissell, C., Noll, D. C. & Fiez, J. A. Tracking the 
hemodynamic responses to reward and punishment in the striatum. J. Neurophysiol. 84, 
3072–3077 (2000).

85.	 Speer, M. E., Bhanji, J. P. & Delgado, M. R. Savoring the past: positive memories evoke 
value representations in the striatum. Neuron 84, 847–856 (2014).

86.	 Baron-Cohen, S., Jolliffe, T., Mortimore, C. & Robertson, M. Another advanced test of 
theory of mind: evidence from very high functioning adults with autism or Asperger 
Syndrome. J. Child Psychol. Psychiatry 38, 813–822 (1997).

87.	 Oldfield, R. C. The assessment and analysis of handedness: the Edinburgh inventory. 
Neuropsychologia 9, 97–113 (1971).

88.	 Davis, M. H. A multidimensional approach to individual differences in empathy. J. Pers. 
Soc. Psychol. 44, 113–126 (1983).

89.	 Wilkinson, G. S. & Robertson, G. J. Wide Range Achievement Test (WRAT5) (Pearson, 2017).
90.	 Gioia, G. A., Isquith, P. K., Guy, S. C. & Kenworthy, L. Behavior rating inventory of executive 

function. Child Neuropsychol. 6, 235–238 (2000).
91.	 Kaplan, E., Goodglass, H. & Weintraub, S. Boston Naming Test (Pro-Ed, 2001).
92.	 Derogatis, L. R. Brief Symptom Inventory (Pearson, 1993).
93.	 Cohen, S., Kamarck, T. & Mermelstein, R. A global measure of perceived stress. J. Health 

Soc. Behav. 24, 385–396 (1983).
94.	 Watson, D. & Clark, L. The PANAS-X manual for the Positive and Negative Affect 

Schedule-Expanded Form. Iowa Res. Online 277, 1–27 (1999).
95.	 Buysse, D. J., Reynolds, C. F., Monk, T. H., Berman, S. R. & Kupfer, D. J. The Pittsburgh Sleep 

Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 28, 
193–213 (1989).

96.	 Evans, D. E. & Rothbart, M. K. Developing a model for adult temperament. J. Res. Pers. 41, 
868–888 (2007).

97.	 Delis, D., Kaplan, E. & Kramer, J. Delis-Kaplan Executive Function System (D-KEFS) 
(Pearson, 2001).

98.	 Wechsler, D. Wechsler Adult Intelligence Scale 4th edn (WAIS–IV) (Pearson, 2008).
99.	 Wechsler, D. Wechsler Abbreviated Scale of Intelligence 2nd edn (Pearson, 2011).
100.	 Sheslow, D. & Adams, W. Wide Range Assessment of Memory and Learning 2nd edn 

(Pearson, 2003).
101.	 Sheehan, D. V. et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the 

development and validation of a structured diagnostic psychiatric interview for DSM-IV 
and ICD-10. J. Clin. Psychiatry 59 (Suppl. 20), 22–33 (1998).

102.	 Fastenau, P. S. & Adams, K. M. Heaton, Grant, and Matthews’ Comprehensive Norms: an 
overzealous attempt. J. Clin. Exp. Neuropsychol. 18, 444–448 (1996).

103.	 Freedman, D. & Manly, J. Use of normative data and measures of performance validity and 
symptom validity in assessment of cognitive function https://nap.nationalacademies.org/
resource/21704/FreedmanManlyCommissioned-paper.pdf (2015).

104.	 First, M. B., Williams, J. B. W., Karg, R. S. & Spitzer, R. L. Structured Clinical Interview for 
DSM-5 Disorders: Clinician Version (American Psychiatric Association Publishing, 2016).

105.	 Smith, S. M. et al. Advances in functional and structural MR image analysis and 
implementation as FSL. Neuroimage 23, S208–S219 (2004).

106.	 Lutkenhoff, E. S. et al. Optimized brain extraction for pathological brains (optiBET). PLoS 
One 9, e115551 (2014).

107.	 Frackowiak, R. S. J. et al. (eds) Human Brain Function (Academic Press, 2004).
108.	 Joshi, A. et al. Unified framework for development, deployment and robust testing of 

neuroimaging algorithms. Neuroinformatics 9, 69–84 (2011).
109.	 Satterthwaite, T. D. et al. An improved framework for confound regression and filtering for 

control of motion artifact in the preprocessing of resting-state functional connectivity 
data. Neuroimage 64, 240–256 (2013).

110.	 R Core Team. R: A Language and Environment for Statistical Computing http://
www.R-project.org/ (R Foundation for Statistical Computing, 2017).

111.	 Emerson, J. W. et al. The generalized pairs plot. J. Comput. Graph. Stat. 22, 79–91 (2012).
112.	 Wei, T. & Simko, V. corrplot: Visualization of a correlation matrix. R v.0.84 https://

CRAN.R-project.org/package=corrplot (2017).
113.	 Bengtsson, H. R.matlab: Read and write MAT files and call MATLAB from within R. R v.3.6.2 

https://CRAN.R-project.org/package=R.matlab (2018).
114.	 Hochman, A. Janus-faced race: is race biological, social, or mythical? Am. J. Biol. 

Anthropol. 175, 453–464 (2021).
115.	 Derogatis, L. R., Lipman, R. S., Rickels, K., Uhlenhuth, E. H. & Covi, L. The Hopkins 

Symptom Checklist (HSCL): a self-report symptom inventory. Behav. Sci. 19, 1–15 (1974).
116.	 First, M., Spitzer, R., Gibbon, M. & Williams, J. Structured Clinical Interview for DSM-IV-TR 

Axis I Disorders, Research Version, Patient Edition (Biometrics Research, New York State 
Psychiatric Institute, 2002).

117.	 Weintraub, S. et al. Cognition assessment using the NIH Toolbox. Neurology 80, S54–S64 
(2013).

118.	 Achenbach, T. The Achenbach System of Empirically Based Assessment (ASEBA): 
Development, Findings, Theory and Applications (University of Vermont Research Center 
for Children, Youth, and Families, 2009).

119.	 Uğurbil, K. et al. Pushing spatial and temporal resolution for functional and diffusion MRI 
in the Human Connectome Project. Neuroimage 80, 80–104 (2013).

120.	 Smith, S. M. et al. Resting-state fMRI in the Human Connectome Project. Neuroimage 80, 
144–168 (2013).

121.	 Barch, D. M. et al. Function in the human connectome: task-fMRI and individual 
differences in behavior. Neuroimage 80, 169–189 (2013).

122.	 Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome 
Project. Neuroimage 80, 105–124 (2013).

https://nda.nih.gov/edit_collection.html?id=3276
https://nda.nih.gov/edit_collection.html?id=3276
https://openfmri.org/dataset/ds000030/
https://openfmri.org/dataset/ds000030/
https://db.humanconnectome.org/app/template/Login.vm
https://db.humanconnectome.org/app/template/Login.vm
https://github.com/abigailsgreene/modelFailure/
https://bioimagesuiteweb.github.io/webapp/
https://nap.nationalacademies.org/resource/21704/FreedmanManlyCommissioned-paper.pdf
https://nap.nationalacademies.org/resource/21704/FreedmanManlyCommissioned-paper.pdf
http://www.R-project.org/
http://www.R-project.org/
https://CRAN.R-project.org/package=corrplot
https://CRAN.R-project.org/package=corrplot
https://CRAN.R-project.org/package=R.matlab


Article
123.	 Shen, X., Tokoglu, F., Papademetris, X. & Constable, R. T. Groupwise whole-brain 

parcellation from resting-state fMRI data for network node identification. Neuroimage 82, 
403–415 (2013).

124.	 Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic 
functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

125.	 Smith, S. M., Vidaurre, D., Alfaro-Almagro, F., Nichols, T. E. & Miller, K. L. Estimation of 
brain age delta from brain imaging. Neuroimage 200, 528–539 (2019).

126.	 Guilmette, T. J. et al. American Academy of Clinical Neuropsychology consensus 
conference statement on uniform labeling of performance test scores. Clin. 
Neuropsychol. 34, 437–453 (2020).

127.	 Esterman, M., Rosenberg, M. D. & Noonan, S. K. Intrinsic fluctuations in sustained 
attention and distractor processing. J. Neurosci. 34, 1724–1730 (2014).

128.	 Karcher, N. R., O’Brien, K. J., Kandala, S. & Barch, D. M. Resting-state functional 
connectivity and psychotic-like experiences in childhood: results from the Adolescent 
Brain Cognitive Development study. Biol. Psychiatry 86, 7–15 (2019).

129.	 Mackenzie, G. B. & Wonders, E. Rethinking intelligence quotient exclusion criteria 
practices in the study of attention deficit hyperactivity disorder. Front. Psychol. 7, 794 
(2016).

130.	 Bzdok, D. & Ioannidis, J. P. A. Exploration, inference, and prediction in neuroscience and 
biomedicine. Trends Neurosci. 42, 251–262 (2019).

131.	 Greene, A. S., Gao, S., Noble, S., Scheinost, D. & Constable, R. T. How tasks change 
whole-brain functional organization to reveal brain–phenotype relationships. Cell Rep. 
32, 870287 (2020).

132.	 Le, T. T. et al. A nonlinear simulation framework supports adjusting for age when analyzing 
BrainAGE. Front. Aging Neurosci. 10, 317 (2018).

133.	 Noble, S. & Scheinost, D. The constrained network-based statistic: a new level of 
inference for neuroimaging. Med. Image Comput. Comput. Assist. Interv. 12267, 458–468 
(2020).

134.	 Freeman, D., Sheaves, B., Waite, F., Harvey, A. G. & Harrison, P. J. Sleep disturbance and 
psychiatric disorders. Lancet Psychiatry 7, 628–637 (2020).

135.	 Riemann, D., Krone, L. B., Wulff, K. & Nissen, C. Sleep, insomnia, and depression. 
Neuropsychopharmacology 45, 74–89 (2020).

136.	 Catabay, C. J., Stockman, J. K., Campbell, J. C. & Tsuyuki, K. Perceived stress and mental 
health: the mediating roles of social support and resilience among black women exposed 
to sexual violence. J. Affect. Disord. 259, 143–149 (2019).

137.	 Hewitt, P. L., Flett, G. L. & Mosher, S. W. The Perceived Stress Scale: factor structure and 
relation to depression symptoms in a psychiatric sample. J. Psychopathol. Behav. Assess. 
14, 247–257 (1992).

138.	 van Dijk, K. R. A., Sabuncu, M. R. & Buckner, R. L. The influence of head motion on intrinsic 
functional connectivity MRI. Neuroimage 59, 431–438 (2012).

139.	 Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but 
systematic correlations in functional connectivity MRI networks arise from subject 
motion. Neuroimage 59, 2142–2154 (2012).

140.	 Noble, S. et al. Influences on the test–retest reliability of functional connectivity MRI and 
its relationship with behavioral utility. Cereb. Cortex 27, 5415–5429 (2017).

Acknowledgements This work was supported by funding from the NIH (GM007205 and 
TR001864 to A.S.G., MH121095 to D.S. and R.T.C., GM007205 to C.H.). D.S.B was partially 
funded by the National Institute of Mental Health (5 T32 MH 19961-22). We are grateful to have 
access to the publicly available UCLA CNP and HCP datasets. Data were provided in part by 
the Human Connectome Project, WU-Minn Consortium (Principal Investigators: D. Van Essen 
and K. Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the 
NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems 
Neuroscience at Washington University. We thank N. Turk-Browne, D. Lee, B. J. Casey, M. 
Nitabach, D. Barson, S. Gottlieb-Cohen, C. Kelley and F. Arias for discussions and suggestions.

Author contributions A.S.G. conceptualized the study, with guidance from R.T.C. and D.S. 
A.S.G. performed the analyses with support from X.S., S.N., D.S., C.H. and R.T.C. A.S.G. designed 
the Yale study with support from M.N.S. and R.T.C. A.S.G., C.A.H., J.A. and F.T. collected the Yale 
dataset, and C.A.H. managed the study. D.S.B. developed the bipolar disorder study, and J.A. 
collected data for this study. G.S., V.H.S. and S.W.W. supported all clinical aspects of the Yale 
study. D.S.B. preprocessed the UCLA CNP dataset and provided related support. C.I.C. 
provided guidance on result interpretation. A.S.G. wrote the manuscript, with contributions 
from R.T.C., S.N., C.I.C. and C.H., and comments from all authors.

Competing interests In the past two years, G.S. has served as a consultant or scientific 
advisory board member to Axsome Therapeutics, Biogen, Biohaven Pharmaceuticals, 
Boehringer Ingelheim International, Bristol-Myers Squibb, Clexio, Cowen, Denovo Biopharma, 
ECR1, EMA Wellness, Engrail Therapeutics, Gilgamesh, Janssen, Levo, Lundbeck, Merck, 
Navitor Pharmaceuticals, Neurocrine, Novartis, Noven Pharmaceuticals, Perception 
Neuroscience, Praxis Therapeutics, Sage Pharmaceuticals, Seelos Pharmaceuticals, Vistagen 
Therapeutics and XW Labs; and received research contracts from Johnson & Johnson 
(Janssen), Merck and Usona. G.S. holds equity in Biohaven Pharmaceuticals and is a 
co-inventor on a US patent (8,778,979) held by Yale University and a co-inventor on US 
provisional patent application no. 047162-7177P1 (00754), filed on 20 August 2018 by Yale 
University Office of Cooperative Research. Yale University has a financial relationship with 
Janssen Pharmaceuticals and may receive financial benefits from this relationship. The 
University has put multiple measures in place to mitigate this institutional conflict of interest. 
Questions about the details of these measures should be directed to Yale University’s Conflict 
of Interest office. V.H.S. has served as a scientific advisory board member to Takeda and 
Janssen. The remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-022-05118-w.
Correspondence and requests for materials should be addressed to Abigail S. Greene or  
R. Todd Constable.
Peer review information Nature thanks Thomas Nichols and the other, anonymous, reviewer(s) 
for their contribution to the peer review of this work. Peer reviewer reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.1038/s41586-022-05118-w
http://www.nature.com/reprints


C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
a

b
Main results 368-node parcellation Ensemble learners Phenotype mean split 10-fold

0 0.5 1

MF, Main results

0

0.2

0.4

0.6

0.8

1

M
F,

 E
ns

em
bl

e 
le

ar
ne

rs

0 0.5 1

MF, Main results

0

0.2

0.4

0.6

0.8

1

M
F,

 N
eu

ra
l n

et

0 0.5 1

MF, Main results

0

0.2

0.4

0.6

0.8

1

M
F,

 3
68

-n
od

e 
pa

rc
el

la
tio

n

0 0.5 1

MF, Main results

0

0.2

0.4

0.6

0.8

1

M
F,

 P
he

no
ty

pe
 m

ea
n 

sp
lit

0 0.5 1

MF, Main results

0

0.2

0.4

0.6

0.8

1

M
F,

 1
0-

fo
ld

rs = 0.94
P < 0.0001

rs = 0.97
P < 0.0001

rs = 0.93
P < 0.0001

rs = 0.999
P < 0.0001

rs = 0.91
P < 0.0001

r1
ca

rd
ey

es gra
d

mov
ies

nb
ac

k ss
t r2 gfc

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

r1
ca

rd
ey

es gra
d

mov
ies

nb
ac

k ss
t r2 gfc r1

ca
rd

ey
es gra

d

mov
ies

nb
ac

k ss
t r2 gfc r1

ca
rd

ey
es gra

d

mov
ies

nb
ac

k ss
t r2 gfc

r1
ca

rd
ey

es gra
d

mov
ies

nb
ac

k ss
t r2 gfc r1

ca
rd

ey
es gra

d

mov
ies

nb
ac

k ss
t r2 gfc r1

ca
rd

ey
es gra

d

mov
ies

nb
ac

k ss
t r2 gfc r1

ca
rd

ey
es gra

d

mov
ies

nb
ac

k ss
t r2 gfc

r1
ca

rd
ey

es gra
d

mov
ies

nb
ac

k ss
t r2 gfc r1

ca
rd

ey
es gra

d

mov
ies

nb
ac

k ss
t r2 gfc r1

ca
rd

ey
es gra

d

mov
ies

nb
ac

k ss
t r2 gfc r1

ca
rd

ey
es gra

d

mov
ies

nb
ac

k ss
t r2 gfc

r1
ca

rd
ey

es gra
d

mov
ies

nb
ac

k ss
t r2 gfc r1

ca
rd

ey
es gra

d

mov
ies

nb
ac

k ss
t r2 gfc r1

ca
rd

ey
es gra

d

mov
ies

nb
ac

k ss
t r2 gfc r1

ca
rd

ey
es gra

d

mov
ies

nb
ac

k ss
t r2 gfc

BNT WRAT VL VL delay

FW Symbol Coding LN
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Neural net

Extended Data Fig. 1 | Model performance and misclassification frequency 
are robust to analysis approach. (a) Classification accuracy for each 
phenotypic measure using FC calculated from all in-scanner conditions in the 
Yale dataset, and five different analysis pipelines: an alternative, 368-node 
parcellation for FC matrix generation, two alternative classification algorithms 
(ensemble of weak learners and neural network), an alternative phenotypic 
binarization threshold (mean split), and an alternative (10-fold) 
cross-validation approach (see Methods for additional description of  
each analysis). Box plot line and hinges represent median and quartiles, 
respectively; whiskers extend to most extreme non-outliers; outliers plotted 
individually (+). Number of classified individuals and size of training sample 
same as in main analyses (see Supplementary Table 4) for all analyses except 
mean split (4 measures [see below], number classified = 109-127, training 
sample size = 72-82) and 10-fold (number classified same as in main analyses, 
training sample size = 34-110). r1, rest 1; r2, rest 2; grad, gradual-onset 
continuous performance task; sst, stop signal task; gfc, general FC. (b) 

Misclassification frequency (MF), averaged across in-scanner conditions  
and phenotypic measures to derive a single value per participant, compared 
between each alternative analysis and main-text analyses. rs, two-tailed rank 
correlation, n = 128-129, P values FDR adjusted. Note that phenotype mean split 
is equivalent to mean ± 1/3 × s.d. for scaled scores; mean split-based model 
accuracy is not reported for these measures, nor are they included in the 
calculation of misclassification frequency. Given the limited mean split-based 
results, we repeated this analysis in the HCP data, with comparable results 
(mean misclassification frequency rs = 0.86, P < 0.0001). 10-fold results reflect 
1,000 analysis iterations per phenotypic measure and in-scanner condition  
(50 per cross-validation partition); all other analyses reflect 100 iterations. In 
this and all subsequent figures: BNT, Boston Naming Test; WRAT, Wide Range 
Achievement Test; VL, verbal learning; FW, finger windows; LN, letter–number 
sequencing; Trails, trail making; VF, verbal fluency; CW, colour–word 
interference; 20Q, 20 questions; Vocab, vocabulary; MR, matrix reasoning.
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Extended Data Fig. 2 | Replication of classification and internal validation 
results in the UCLA CNP dataset. Results as presented in Fig. 1b, Fig. 2, and 
Fig. 4a. (a) Significance via one-tailed permutation testing (as in Fig. 1b);  
P values FDR adjusted (3 tests). For sample sizes, see Supplementary Table 5.  
(b) As in Yale data, mean of permuted distribution did not significantly differ  
from 0.5 (all P > 0.05, FDR adjusted [3 tests]), mean and median of original 
data-based distribution significantly differed from 0.5 (all P < 0.0001, FDR 
adjusted [6 tests] via two-tailed t- and Wilcoxon signed-rank tests), and the 
misclassification frequency distributions for original and permuted analyses 
significantly differed for each measure (all P < 0.0001, FDR adjusted [3 tests] 
via two-tailed, two-sample Kolmogorov–Smirnov test). (c) *P < 0.0001, FDR 
adjusted (3 tests) via paired, one-tailed Wilcoxon signed-rank test (as in Fig. 2b). 

(d) Given the small number of included measures, we present these results  
only for consistency with main analyses. As in Fig. 2c, different participants 
excluded for intermediate, missing, or outlier scores for each measure; number 
of correlated participants for each measure pair ranges from misclassification 
frequency: 103-138, measure: 162-163. (e) Results as presented in Fig. 4a. 
Covariate relationships presented if they were significantly related to 
misclassification frequency in low or high scorers (P < 0.05, adjusted), or if they 
were significantly related to misclassification frequency in Yale analyses 
(education, race) to demonstrate comparable trends. All P values FDR adjusted 
(22 tests). For full results and relationship of covariates to mean score, as well as 
sample sizes, see Supplementary Tables 9 and 10. PAMret, paired associates 
memory task, retrieval; SST, stop signal task; MF, misclassification frequency.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Replication of classification, internal validation and 
external validation results in the HCP dataset. Results as presented in Fig. 1b, 
Fig. 2a, b, Fig. 3a, and Fig. 4a. Given the large HCP sample size, 10-fold cross-
validation was used (20 partitions, 50 subsampling iterations each), with the 
requirement that family members be assigned to the same fold. Given that  
only two measures were classified, we omit measure versus misclassification 
frequency similarity and hierarchical linkage analyses. (a) Significance via one-
tailed permutation testing (as in Fig. 1b); P values FDR adjusted (2 tests). For 
sample sizes, see Supplementary Table 6. (b) Permuted distribution means 
significantly differed from 0.5 via two-tailed, one-sample t-test (cIQ 
mean = 0.491 [P < 0.0001], fIQ mean = 0.498 [P = 0.04], both FDR adjusted  
[2 tests]). All else as in Yale and UCLA analyses: mean and median of original 
data-based distribution significantly differed from 0.5 (all P < 0.0001, FDR  
adjusted [4 tests] via two-tailed t- and Wilcoxon signed-rank tests), and the 
misclassification frequency distributions for original and permuted analyses 
significantly differed for each measure (all P < 0.0001, FDR adjusted [2 tests] via 

two-tailed, two-sample Kolmogorov–Smirnov test). MF, misclassification 
frequency. (c) **P = 0.001, ****P < 0.0001, FDR adjusted (2 tests) via paired, one-
tailed Wilcoxon signed-rank test (as in Fig. 2b). (d) Results presented as in Fig. 3a. 
Bar height, grand mean; error bars, s.d. *P < 0.0001, FDR adjusted (9 tests) via 
two-tailed, nested ANOVA. For each classified measure (cIQ/vocabulary and 
fIQ/MR for HCP/Yale), six models were trained: 1 using all Yale participants,  
1 using Yale CCP, 1 using Yale MCP (see Fig. 3 legend for training set sizes), 1 using 
all HCP participants (number of participants used for training after excluding 
intermediate and outlier scores and subsampling to balance classes: 230 and 
350 for crystallized and fluid measures, respectively), 1 using HCP CCP (168, 216),  
and 1 using HCP MCP (62, 134). See Supplementary Tables 4 and 6 for test-set 
sizes. (e) Results as presented in Fig. 4a. Covariate relationships presented if 
they were significantly related to misclassification frequency in low or high 
scorers (P < 0.05, adjusted). For full results and relationship of covariates to 
mean score, as well as sample sizes, see Supplementary Tables 9 and 10. 
****P < 0.0001; all P values FDR adjusted (22 tests).



Extended Data Fig. 4 | Selected edges for top-degree nodes in each Yale/UCLA model. Results as presented in Fig. 3c. For MR, YM and Vocabulary, UC two 
nodes were tied for highest degree (MR, YM: 26 and 157; Vocabulary, UC: 166 and 191). Only one node for each model visualized for illustration.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Comparison of FC between CCP and MCP groups at 
edge and network levels. Edges, GFC: t statistics for each GFC edge found to 
significantly differ (via two-sample t-test) between groups (P < 0.05, FDR 
adjusted), ordered by network. Red, CCP>MCP; Blue, MCP>CCP. Networks, 
GFC: mean t statistics for each network pair (using GFC) found to significantly 
differ (via Constrained NBS133) between groups (one-tailed P < 0.025, FDR 
adjusted). Red, CCP>MCP; Blue, MCP>CCP. Significant edges across tasks and 
Significant networks across tasks: Number of times (i.e., tasks for which) edge 
(ordered by network) or network pair was significantly greater for CCP than 

MCP – number of times edge or network pair was significantly greater for MCP 
than CCP. Mean GFC, CCP and Mean GFC, MCP: GFC, averaged across 
participants within each group; main diagonal set to 0, and nodes ordered by 
network. Note that CCP and MCP groups differ for each phenotypic measure 
and in-scanner task (range of number of participants using GFC across 
phenotypic measures: CCP = 46-81, MCP = 23-63). Black dashed lines separate 
networks: 1 = medial frontal, 2 = frontoparietal, 3 = default mode, 4 = motor, 
5 = visual A, 6 = visual B, 7 = visual association, 8 = salience, 9 = subcortical, 
10 = cerebellum (for network visualization, see140).



Article

Extended Data Fig. 6 | Future directions. Schematic representation of recommended framework for study design and analysis to yield more precise, useful, and 
unbiased models.



Extended Data Fig. 7 | Race and ethnicity. Reported racial and ethnic breakdowns of the Yale, UCLA and HCP samples.
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Extended Data Table 1 | Relationship of brain to phenotype after controlling for covariates

Multiple linear regression results for all models reported as |t| for parameter estimates. All covariates with coefficient P < 0.05 for any model are reported (n.s.: P ≥ 0.05; significant P values in 
parentheses, uncorrected). Educ, amount of education; Mot, in-scanner head motion; Rx, medication status; PSQI, Pittsburgh Sleep Quality Index. Outlier scores and missing data excluded, as 
in main analyses, but all (including intermediate) continuous scores included given application of previously developed models. Yale, n = 94; UCLA, n = 162-163; HCP, n = 641–646.
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preprocessing pipeline and BioImage Suite. Data analysis and result visualization were performed using BioImage Suite; Matlab (Mathworks) 
2017a, 2018a, and 2021b; GraphPad Prism version 9.0.1; and R version 3.6.0 for macOS. MATLAB code to run classification, validation, and 
covariate analyses is available at https://github.com/abigailsgreene/modelFailure/.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The primary dataset used in these analyses represents the first set of participants in an ongoing study. Data will be released in waves via the NIMH Data Archive, 
Collection 3276. The UCLA CNP data can be obtained from the OpenfMRI database (https://openfmri.org/dataset/ds000030/), accession number ds000030. The 
HCP data are publicly available on the ConnectomeDB database (https://db.humanconnectome.org/app/template/Login.vm). Data used to generate the parcellation 
can be found at http://fcon_1000.projects.nitrc.org/indi/retro/yale_hires.html.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The Yale sample includes 129 participants, the UCLA sample includes 163 participants, and the HCP sample includes 664 participants after 
exclusions. These samples are of comparable size to or larger than samples used in previously published brain-based predictive modeling work 
(e.g., Finn, Shen, et al., 2015, Nature Neuroscience).

Data exclusions Participants were excluded for excessive in-scanner head motion (pre-determined thresholds), missing data, and imaging coverage, 
anomalies, or other data quality issues.

Replication The UCLA CNP and HCP datasets were used as external validation datasets, and all main results were replicated in them. Some differences in 
covariates that track misclassification were observed across datasets, reflecting the likely sample dependence of score stereotypes (see 
Discussion).

Randomization N/A; there were no experimental groups in the study.

Blinding N/A; there was no group allocation in the study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics See Supplementary Table 3 and Extended Data Figure 7 for detailed demographic information for the Yale, UCLA, and HCP 
datasets.

Recruitment The Yale sample was recruited via community advertisements and recruitment from several Yale clinics with which 
collaborations were established. UCLA participants were recruited via community advertisements, outreach to clinics, and 
online portals. HCP participants were recruited broadly from families containing twins in Missouri.

Ethics oversight The protocol for the Yale study was approved by the Yale Institutional Review Board. The UCLA CNP study was approved by 
the Institutional Review Boards at UCLA and the Los Angeles County Department of Mental Health. The HCP study was 
approved by the Institutional Review Board at Washington University in St. Louis.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Magnetic resonance imaging

Experimental design

Design type Both resting-state and task fMRI data were used.

Design specifications Tasks used in each study have been described in previously published work (main text reference 78). For the purposes 
of this work, task design was not relevant, as functional connectivity was calculated from continuous BOLD timecourses 
regardless of task design.

Behavioral performance measures In-scanner behavioral performance measures were not used for this work.

Acquisition

Imaging type(s) Functional and structural imaging was performed

Field strength 3T

Sequence & imaging parameters Yale: MPRAGE (208 slices acquired in the sagittal plane, repetition time (TR) = 2400 ms, echo time (TE) = 1.22 ms, flip 
angle = 8deg, slice thickness = 1 mm, in-plane resolution = 1 mm x 1 mm). EPI (75 slices acquired in the axial-oblique 
plane parallel to the AC-PC line, TR = 1000 ms, TE = 30 ms, flip angle = 55deg, slice thickness = 2 mm, multi-band 
acceleration factor = 5, in-plane resolution = 2 mm x 2 mm). UCLA: MPRAGE (176 slices acquired in the sagittal plane, TR 
= 1900 ms, TE = 2.26 ms, slice thickness = 1 mm, FOV = 250 mm, matrix size = 256 x 256). EPI (34 slices acquired in the 
oblique plane, TR = 2000 ms, TE = 30 ms, flip angle = 90deg, slice thickness = 4 mm, FOV = 192 mm, matrix size = 64 x 
64). HCP: MPRAGE (256 slices acquired in the sagittal plane, TR = 2400 ms, TE = 2.14 ms, flip angle = 8deg, slice 
thickness = 0.7 mm, in-plane resolution = 0.7 mm x 0.7 mm). EPI (72 slices acquired in the axial-oblique plane, TR = 720 
ms, TE = 33.1 ms, flip angle = 52deg, slice thickness = 2 mm, in-plane resolution = 2 mm x 2 mm, multiband factor = 8).

Area of acquisition Whole brain scans were acquired.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Structural scans were skull stripped using an optimized version of the FMRIB’s Software Library (FSL) pipeline (optiBET). 
Motion correction was performed in SPM12. Nonlinear registration of the MPRAGE to the MNI template was performed in 
BioImage Suite, and linear registration of the functional to the structural images was performed using a combination of FSL 
and BioImage Suite linear registration tools to optimize registration quality. All additional preprocessing steps were 
performed in BioImage Suite, and included regression of mean time courses in white matter, cerebrospinal fluid, and gray 
matter; high-pass filtering to correct linear, quadratic, and cubic drift; regression of 24 motion parameters; and low-pass 
filtering (Gaussian filter, sigma=1.55). Preprocessing of the UCLA and HCP data was performed similarly, with minor 
modifications (including the use of the HCP minimal preprocessing pipeline; see Methods).

Normalization Both nonlinear and linear registrations were performed (nonlinear registration of the MPRAGE to the MNI template, and 
linear registration of the functional data to the MPRAGE).

Normalization template The MNI template was used for normalization.

Noise and artifact removal See above. Additional confound analyses to control for motion are described in the Methods, with results reported in 
Supplementary Fig. 1 and Table 7.

Volume censoring Censoring was not performed.

Statistical modeling & inference

Model type and settings Main analyses involved functional connectivity-based classification of binarized phenotypic scores. As described in the text 
(Methods: Phenotype classification), classification was performed in a leave-one-out cross-validated fashion, with the training 
set subsampled from non-test subjects to ensure balanced classes. Edges were selected based on their correlation with the 
modeled outcome, and summed to yield summary statistics that were normalized and submitted to a linear support vector 
machine. This process was repeated iteratively, with each subject held out, and this, in turn, was performed 100 times with 
unique training set subsampling. The entire analysis was repeated for every combination of in-scanner condition and 
phenotypic measure. Classification outcome and phenotypic scores were related to a range of covariates in a pairwise 
fashion (two-tailed Mann-Whitney U tests for binary covariates and rank correlation for continuous covariates), as well as via 
regression. Modifications of this analysis demonstrate the robustness of results to classification algorithm, phenotype 
binarization, parcellation, and cross-validation approach (see Methods, Extended Data Fig. 1, and Supplementary Table 11). 
One-tailed tests were only used in the case of a-priori directional hypotheses.

Effect(s) tested The main effect of interest was whether individuals were correctly classified as high- or low-scoring.

Specify type of analysis: Whole brain ROI-based Both
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Statistic type for inference
(See Eklund et al. 2016)

Voxel-wise analyses were not performed. The constrained network-based statistic was used for comparison of FC at the 
network level across correctly classified and misclassified groups (Extended Data Fig. 5, Methods).

Correction P values were FDR adjusted for multiple comparisons, where relevant and as noted throughout the text.

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Functional connectivity was measured via Fisher-transformed Pearson correlation.

Graph analysis Binarized node degree was used for model visualizations in Fig. 3 and Extended Data Fig. 4.

Multivariate modeling and predictive analysis In main analyses, edges were selected based on their correlation with the outcome (in the training set), and 
were summed to yield model features, which were normalized and submitted to a linear SVM to classify 
neurocognitive score (see above and Methods: Phenotype classification). In supplementary analyses, edges 
were used as features and submitted to an alternative classification algorithm (bagging or neural network; 
Methods). Classification accuracy was used to evaluate models, with significance evaluated via permutation 
tests.
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