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Carbon implications of marginal oils from 
market-derived demand shocks

Mohammad S. Masnadi1 ✉, Giacomo Benini2, Hassan M. El-Houjeiri3, Alice Milivinti4, 
James E. Anderson5, Timothy J. Wallington5, Robert De Kleine5, Valerio Dotti6, 
Patrick Jochem7 & Adam R. Brandt2 ✉

Expanded use of novel oil extraction technologies has increased the variability of 
petroleum resources and diversified the carbon footprint of the global oil supply1. Past 
life-cycle assessment (LCA) studies overlooked upstream emission heterogeneity by 
assuming that a decline in oil demand will displace average crude oil2. We explore the 
life-cycle greenhouse gas emissions impacts of marginal crude sources, identifying the 
upstream carbon intensity (CI) of the producers most sensitive to an oil demand 
decline (for example, due to a shift to alternative vehicles). We link econometric models 
of production profitability of 1,933 oilfields (~90% of the 2015 world supply) with their 
production CI. Then, we examine their response to a decline in demand under three oil 
market structures. According to our estimates, small demand shocks have different 
upstream CI implications than large shocks. Irrespective of the market structure, small 
shocks (−2.5% demand) displace mostly heavy crudes with ~25–54% higher CI than that 
of the global average. However, this imbalance diminishes as the shocks become bigger 
and if producers with market power coordinate their response to a demand decline. 
The carbon emissions benefits of reduction in oil demand are systematically dependent 
on the magnitude of demand drop and the global oil market structure.

The energy sector is in a state of rapid change. Several countries 
announced a variety of ‘green’ policies to recover from the 2020 COVID-
19 downturn. Many of these policies could have a long lasting effect on 
the oil and gas industry3,4. The industry could enter into an era of declin-
ing demand, technology-led supply response, intense competition, 
investors’ scepticism, and increasing public and government pressure 
regarding impacts of the oil sector on the environment4.

Environmental impacts of oil are commonly measured using LCA 
methods. The life-cycle carbon footprint, or CI of oil-derived trans-
portation fuels (for example, gasoline) includes the greenhouse gas 
(GHG) emissions resulting from the combustion of fuels themselves as 
well as emissions from production and refining of petroleum products. 
So-called upstream emissions from exploration, extraction and trans-
portation of crude oil differ widely between oilfields (~20–300 kg of CO2 
equivalent per barrel (kgCO2e bbl−1) of oil) due to diverse sub-surface 
geological properties of the deposit, physical and thermodynamic prop-
erties of the hydrocarbons, and production and resource management 
practices1. Similarly, ‘midstream’ emissions from refining vary widely 
(~10–60 kgCO2e bbl−1 oil) due to the quality of stream of processed crude 
and the refining technologies applied5. These emissions contribute to 
variability in the life-cycle CI of different crude oil supply chains.

The profitability of crude oil production somewhat mirrors the het-
erogeneity in GHG emissions. The cost-effectiveness of the upstream 
sector varies due to the properties of the crude extracted, the marginal 
production costs, the capacity of the producers to affect the global oil 

price, and the global oil demand elasticity. Thus, some fields are very 
profitable, while others barely break even.

Recent studies have separately analysed the heterogeneity in the GHG 
emissions1,5 and the economics of the oil market (Benini, G. et al., manu-
script in preparation). However, the interaction between the two remains 
poorly understood. As a result, the characteristics of marginally economic 
oilfields are not systematically available. This interaction is important 
because it affects the magnitude of emissions mitigation potential as less 
profitable oil producers are displaced when demand declines. The demand 
drops can be due to socio-economic effects (for example, recessions or 
the ongoing COVID-19 pandemic), substitution effects (for example, more 
extensive use of alternative fuels/vehicles), and technological change 
within the transportation sector (for example, greater fuel efficiency).

In the past decade, development of ‘consequential’ LCA aimed 
to incorporate numerous economic factors into previously static 
engineering-based analysis2,6–8. These analyses attempt to model income 
and substitution effects of introducing alternatives, instead of simply 
assuming that a new product directly displaces an old product. To date, 
this consequential LCA paradigm has not reached crude oil LCA, and 
studies of alternatives to crude oil (for example, electric vehicles (EVs)) 
nearly always assume that an alternative simply displaces average crude 
oil. The merging of CI and profitability allow us to conduct the first conse-
quential LCA study of the global oil supply (to the best of our knowledge).

The present work connects the upstream CI of 1,933 oilfields (~90% of 
2015 global crude production) with their profitability. The CI of fields is 
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calculated using a well-to-refinery estimation tool, which assesses the 
emissions due to the production of an additional barrel of crude from a 
particular oilfield. The profitability is calculated using a microeconomic 
model, which determines how much money a company is willing to pay 
to manage an additional barrel of crude located in a particular oilfield 
(see Methods). The integration of field-specific CI and profitability 
allows us to identify the emissions of fields close to the break-even 
point (extensive margin of the industry). In other words, we isolate 
the emissions of those fields where the management choice hangs in 
the balance between ‘how much should I produce?’ and ‘should I keep 
producing or cease business operations?’

Our results suggest that an environmental policy designed around 
non-market informed LCA results could ignore first-order effects. In 
addition, the structure of the global oil market systematically affects 
the life-cycle benefits from a decline in oil demand. These results could 
serve public (for example, the US Department of Energy National Energy 
Modeling System) and private energy system models to better assess 
the benefits of technological change within the transportation sector.

Results and discussion
Country-level
Figure 1 presents the global map of national volume-weighted average 
(VWA) marginal production costs (MC) in 2015. The numbers below the 

name of each country in the map are the corresponding upstream VWA 
CIs (in kgCO2e bbl−1). The global average MC estimate—shown by the hori-
zontal dashed line in Fig. 1—is ~US$5.9 bbl−1 crude oil, with country-level 
MCs ranging from 2.8 (Iraq (IRQ)) to US$21.5 bbl−1 (Columbia (COL)). 
Fields with the lowest production costs are mainly conventional resources 
located in the Middle East and North Africa. There is a wide range of pro-
duction emissions associated with these regions, with routine flaring as 
the major driver of high CI due to lack of investment/infrastructure for 
gas handling (see Supplementary Information section 3.3).

Among large producers, Venezuelan, Mexican and Canadian oils 
are the most expensive and tend to have high production CIs. The US 
oil industry stands near the global average in terms of GHG emissions 
and  has a high MC (~US$7.3 bbl−1).

Note that the dynamics of the emissions presented in Fig. 1 can vary 
over time9,10. However, due to the fact that substantial change in pro-
duction strategies takes time, the relative magnitude of the presented 
emissions can be expected to hold for a short-term outlook of <5–10 
years. See Supplementary Information section 3.1 for production eco-
nomics time-series dissection.

Crude type
Table 1 groups field-level results into summary statistics of a set of global 
crude classes. Heavy fields (most commonly located in Venezuela) and 
extra heavy fields (mostly located in Canada) are the least profitable 
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Fig. 1 | Estimated global crude oil upstream marginal cost of production 
(2015). National volume weighted average (VWA) upstream marginal cost of 
production in US$ bbl−1 crude oil produced. Map shows national VWA upstream 
marginal CI below each country name (in kgCO2e bbl−1 crude oil delivered to 
refinery). The global VWA MC estimate is shown by the horizontal dashed line 

(~US$5.6 bbl−1). Reference year is 2015. Top 30 global producers are mapped 
(see Supplementary Data 1 for full list). Countries are named based on their ISO 
3 code. Colour scheme reflects national VWA MC: dark blue for lowest MC, dark 
red for highest MC.
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fields with relatively high MC and low selling price (due to low API grav-
ity). Oil sands have the lowest selling oil price due to low API gravity and 
high sulfur content. However, their MCs have substantially decreased in 
recent years11,12 making them more competitive vis-à-vis heavy and extra 
heavy crudes. Contrary to all the other types of crude, oil sands are all 
located in a single country (Canada). Therefore, they are particularly 
sensitive to national-specific shocks and transport logistics issues. Shale 
and tight oil resources are somewhat more competitive, with relatively 
higher profit margins in all three economic cases, lower emissions, and 
lighter density crude (higher selling price and lower refining emissions). 
Conventional light and medium fields are the largest and cheapest to 
extract crude oil with high selling price, low MC and relatively low CI.

The average profitability (shadow price (SP)) of different crude types 
changes accordingly to the assumption on the market structure. In per-
fect competition (PC), every field is an independent firm, which exerts 
no market power. In oligopolistic competition (oligopoly), a limited 
number of firms owns many fields. In cartel competition (cartel), a 
limited number of firms coordinate their production decisions via a 
syndicate (for example, the Organization of the Petroleum Exporting 
Countries (OPEC)—see Methods). In PC, the oilfield SP is the difference 
between the price at which it sells its output and the MC. The conven-
tional light and medium fields are the most profitable producing units 
(see SP-PC in Table 1). In oligopoly, the volume of production of the firm, 
which owns the field, affects its SP. In cartel, the volume of production 
of OPEC affects the SP of the field’s member of the union. As a result, 
in oligopoly and cartel cases, shutting down or reducing production 
from individually profitable oilfields is rational, since the firm/cartel 
will sell less output but at a higher price. As a result, in oligopoly and in 
cartel cases many light and medium fields owned by large international 
or national oil companies shift to a least profitable position.

Irrespectively of the underlying market structure, heavy fields tend 
to remain the least profitable formation. Thus, these are the crudes 
most likely to be displaced by an oil demand reduction. Carbon taxa-
tion would also significantly affect their profitability due to their high 
production CI. Gas management (that is, routine flaring and methane 
venting and fugitives) is the major CI contributor for light and medium, 
and shale and tight oil crudes. The profitability of these fields is there-
fore exposed to gas management regulations (for example, production 
restriction as imposed in eastern Canada13).

Field-level
To estimate field-level CI (see Methods), we separate the GHG emissions 
due to the production of the next barrel from the emissions due to the 

exploration, and drilling and development. The former identifies the 
environmental footprint linked to the SP of discovered oil (that is, the 
one identified in the econometric analysis). The latter—exploration and 
development emissions—are smaller in most cases and are coupled to 
the SP of undiscovered oil (not included in this work). Next, the com-
puted SPs of discovered oilfields are sorted from smallest to largest 
(that is, low to high profitability). As a result, we obtain a merit base 
curve, which links profitability to production CI for the three market 
structures (PC, oligopoly and cartel—see Methods).

Figure 2 combines the upstream cumulative VWA CIs (right axis) and 
the sorted SPs (left axis), against the percentage of total oil production 
covered in this work. Analogous to the upstream CI1, the presented 
wide range of SPs illustrates heterogeneity of production costs due to 
diverse operational, physical, chemical, and geological properties of 
different oilfields. Fields in the highest fifth percentile (~US$53 bbl−1) 
make over 17% more marginal profit per barrel than the median field 
(~US$46 bbl−1) for all economic cases.

Each local peak along the CI curve in Fig. 2 indicates an addition of a 
field with relatively high CI and production rate compared to the preced-
ing covered fields. For example, the early sharp peaks by using the cartel 
model (black curve in Fig. 2) correspond to Venezuelan heavy fields. Large 
peaks in cumulative CIs at the beginning (0–20% of total production) 
imply that many less-economic fields with relatively low SPs also emit 
high GHG emissions (few exceptions are unprofitable depleted conven-
tional fields with low SP and low emissions). These marginal oilfields are 
consequently more vulnerable to any future carbon taxation/regulation 
regime and more likely to be displaced by a demand shift.

In all economic cases, the cumulative CI curve trends downward due 
to covering fewer emitting fields. This trend continues for the PC case 
until reaching 51.9 kgCO2e bbl−1 (at 100% production coverage), which 
is the global VWA marginal CI (see Table 1). However, for the other two 
cases (that is, oligopoly and cartel), including the global oil demand 
elasticity and market power correction in computing the SP results in 
less profitability of several low-emitting conventional producers. Thus, 
for oligopoly and cartel models after few high peaks, the cumulative 
CI curve first trends descending (conventional with low CI) and later 
trends ascending (remaining fields with higher CI than conventional 
closer to margin). See Supplementary Information section 3.3 and 
Supplementary Data 1 for field-level additional data.

Displacement implications
Many reports estimate near and long-term volume of oil that is going 
to be displaced and/or stranded by technological developments and/

Table 1 | 2015 global oilfields characteristics based on crude type

Crude type Share in 
global 
productiona 
(%)

Total 
no. 
fields

CIb 
(kgCO2e bbl−1)

Oil priceb 
(US$ bbl−1)

MCb 
(US$ bbl−1)

SP-PCb 
(US$ bbl−1)

SP-oligopolyb,c 
(US$ bbl−1)

SP-cartelb,c 
(US$ bbl−1)

API 
gravityb 
(°API)

Flare-to-oil 
ratiob 
(scf bbl−1)

Light and 
medium

77.5% 1,259 49.0 51.1 4.2 46.9 42.1 36.0 33.7 154.8

Heavy 8.6% 157 61.0 47.2 16.6 30.6 28.7 25.8 17.2 122.4

Shale and tight 
oil

7.7% 314 53.4 52.2 6.8 45.5 44.9 44.6 29.8 193.7

Oil sands 2.0% 21 129.2e 45.3 6.3 39.0 38.3 38.3 19.3 2.0

Extra heavy 0.5% 9 60.3 50.1 20.2 29.9 28.9 28.9 13.7 32.3

Other oild 3.6% 173 42.3 52.4 5.9 46.6 45.0 45.0 28.2 84.4

Global average 100.0% 1,933 51.9 50.7 5.6 45.1 41.1 36.1 31.4 148.7
aGlobal production covered in this work: 71.0 MMbbl d−1. 
bVolume-weighted average based on field-level share of production. scf, standard cubic foot. 
cThe oil demand elasticity of η = −0.35 is used for both oligopolistic and cartel competition cases. 
dFields that are not characterized in the used dataset and are excluded in the paper discussions. 
eResearch is in progress to re-evaluate the oil sands upstream CI based on regional and real operation emission data (for example, see ref. 61 Sleep).
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or policy measures14–18. These estimates depend on numerous scenario 
assumptions (for example, growth rate of EVs, global income growth and 
the way these factors interact) and their conclusions differ markedly.

Instead of selecting any one scenario, we create abstract round 
number shocks to identify the environmental effect resulting from 
the displacement of the extensive margin of the oil industry. Such 
shocks might stem from policies to counter climate change, eco-
nomic slowdowns, geopolitical conflict, or (as the case in 2020) global 
diseases like COVID-19. We first consider an oil demand reduction of 

2.5% relative to the baseline (~1.8 million barrels per day (MMbbl d−1)), 
which we call small shock scenario. Then, we consider a reduction of 
~5% (~3.6 MMbbl d−1), which we call COVID-19 pandemic scenario due 
to its resemblance with the contraction in oil demand observed dur-
ing the 2020 pandemic19,20. Finally, we consider a reduction of ~10% 
(~7.1 MMbbl d−1), which we call medium shock. The latter could result 
from a vigorous adoption of alternatives or major macroeconomic 
downturns like a global financial recession. Note that in medium and 
large demand reduction scenarios (that is, roughly >5–10%), only the 
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Fig. 2 | Upstream cumulative volume-weighted average CIs (right axis) and 
sorted SPs (left axis) of global oilfields for PC, oligopoly and cartel 
economic cases versus the percentage of total oil production in 2015. 
The oil demand elasticity of η = −0.35 is used for both oligopoly and cartel 

competition cases. See Supplementary Information section 3.2 
(Suppplementary Figs. 10 and 11) for results variation based on different oil 
demand elasticities and further discussions.

Table 2 | Characteristics of small and COVID-19 shock scenarios for crude oil demand reduction using different economic 
models

Perfect competition (PC) Oligopolistic competition (oligopoly)b Cartel competition (cartel)b Total (reference)

Shock scenariod Small 
shock, 2.5% 
reduction

COVID-19 
shock, 5% 
reduction

Medium 
shock, 10% 
reduction

Small 
shock, 2.5% 
reduction

COVID-19 
shock, 5% 
reduction

Medium 
shock, 10% 
reduction

Small 
shock, 2.5% 
reduction

COVID-19 
shock, 5% 
reduction

Medium 
shock, 10% 
reduction

100% reduction

Displaced volume 
(MMbbl d−1)

1.8 3.6 7.1 1.8 3.6 7.1 1.8 3.6 7.1 71.0

Median 
production 
(bbl d−1)

10,000 8027 5452 12,493 21,342 19,370 38,507 68,986 50,000 7,507

MC of productiona 
(US$ bbl−1)

26.6 21.9 18.1 26.6 15.9 14.1 11.5 10.4 7.0 5.6

SPa (US$ bbl−1) 18.6 22.5 28.3 16.9 19.7 22.3 2.3 6.5 9.9 45.1/41.1/36.1c

CIa (kgCO2e bbl−1) 79.7 70.6 71.2 80.3 50 47.8 65 45.8 40.1 51.9

Total no. fields 37 68 276 33 42 79 16 25 39 1,933

Light and medium 
(vol%)

1 2 15 1 52 49 59 75 87 77.5

Oil sands (vol%) 0 8 11 0 0 4 0 0 0 2

Heavy (vol%) 96 85 64 96 47 44 37 23 11 9

Extra heavy (vol%) 0 3 5 0 0 2 0 0 0 1

Shale and tight oil 
(vol%)

0 0 2 0 0 0 3 1 1 8

Unconventional 
total (vol%)

96 96 82 96 47 50 40 24 12 19

Annual upstream 
mitigation 
potential (MtCO2e)

54 92 184 53 69 124 39 61 109 1,343

aVolume-weighted average based on field-level share of production. 
bThe oil demand elasticity of η = −0.35 is used for both oligopolistic and cartel competition cases. 
cSP-PC, SP-oligopoly, and SP-cartel, respectively. 
dThe accuracy of estimate is likely to decrease for larger demand reduction shocks (for example, 10% reduction) of oligopoly and cartel model results. See the corresponding text for further 
discussion.
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PC-SP is informative. In the other two cases (that is, oligopoly and 
cartel), the estimated SP is likely to become uninformative, since the 
market power correction term would change due to a transformation of 
the market structure (for example, countries leave/join OPEC, different 
propensity of countries to respect OPEC quotas, or different outcomes 
of the game-in-quantities played among oligopolists).

Table 2 characterizes the small, COVID-19, and medium shock 
scenarios using the different market structures. In PC, the marginal 
fields are mostly small producers, with median production of ~8,000–
10,000 bbl d−1. The oligopoly and cartel cases shift few large conven-
tional producers close to the industry margins (Table 2, and bar widths 
in Supplementary Figs. 12–14). The shift occurs for the same reasons 
explained above. Namely, oligopolists and members of the cartel adjust 
production from profitable fields to maximize their total profit.

In all three economic models, the VWA MC of the marginal fields is 
much higher (25–375%) than the global average MC of ~US$5.6 bbl−1. 
Shifting low carbon intensive light and medium conventional fields 
towards the margin lowers the average CI of the displaced oil, but sev-
eral heavy fields stay at the margin. We conclude that oil demand shocks 
result in nonlinear carbon emissions reduction. In all three economic 
cases, the CI of the crudes displaced by the small shock is ~25–54% larger 
than the global average of 51.9 kgCO2e bbl−1. The CI of the displaced 
crudes by COVID-19 shock is ~35% larger than the global average for 
PC, but is close to the global average CI using oligopolistic and cartel 
competition. The PC model still provides accurate estimates for 10% 
reduction shock where the CI of the displaced crudes is ~37% larger than 
the global average. However, the oligopoly and cartel models might not 
capture the market behaviour for such a large shock. The average CIs 
for these two economic cases due to 10% demand reduction are lower 
than global average with large volume share of light and medium crudes 
being displaced due to market power considerations.

The demand reduction magnitude affects the average CI of displaced 
crudes. Heavy oilfields with high CI (mostly located in Venezuela) have 
consistent contribution in all demand reduction scenarios and across 
all economic models. The total share of unconventional crudes (by 
volume) generally decreases by including market power corrections 
in the economic model, as it becomes more viable for large national 
oil companies to exert market power by reducing production from 
productive conventional fields. Our results show that given the pro-
posed three economic cases, the small, COVID-19 and 10% reduction 
shocks in the global oil demand would result in the elimination of 39–54, 
61–92 and 109–184 MtCO2e per year of upstream emissions, respec-
tively. Supplementary Figure 15 shows a full range of annual carbon 
mitigation potential versus the amount of oil displaced using the three 
economic models. Larger reductions of GHG emissions associated 
with refining of oil and the final combustion of corresponding prod-
ucts would also occur, but are not included in these calculations. See 
Supplementary Information section 4.2 and Supplementary Table 8 
for well-to-wheel mitigation potential estimate ranges and further 
discussions on demand sector GHG emissions.

In this work, we only included the production economics and identi-
fied the extensive margin of the oil industry. However, various other 
dynamic forces such as production agreements, region-specific fiscal 
regimes, regulations (for example, fuel standard policies), geopolitics (for 
example, sanctions, trade wars), technical advances and incidental events 

could move a particular oilfield toward or away from the margin. Further 
analysis of these factors is beyond the scope of this work, but could be 
pursued in future research (see Supplementary Information section 5).
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Methods

Research scope
This work covers upstream emissions (including production and trans-
port of crude oil to refinery gate) and costs. Due to lack of access to 
refinery cost data, we cannot generate a fully market-informed (con-
sequential) well-to-wheel emissions analysis that goes all the way to 
refined fuels. Nevertheless, we provide a discussion on how upstream 
displacement could affect the emissions of the demand side (see Sup-
plementary Information section 4.2).

Carbon intensity model
The field-level CI is estimated using the Oil Production Greenhouse Gas 
Emissions Estimator (OPGEE version 2.0)21–23. OPGEE is an open-source, 
peer-reviewed9,10,21,24–31, bottom-up, engineering-based model. The 
OPGEE system boundary is ‘well-to-refinery’ (WTR, that is, explora-
tion, drilling and development, production and extraction, surface 
processing, maintenance, waste disposal, and crude transport to the 
refinery). Reported emissions are measured in gCO2e emitted per 1 MJ 
lower heating value (LHV) of crude petroleum delivered to the refinery 
entrance gate. All GHGs are converted to gCO2e using AR5 GWP100 
conversion factors (without carbon feedback)32. See the OPGEE user 
guide21 for more details of each process stage.

OPGEE estimates CI using up to 50 parameters as input data for each 
modelled oilfield. If input data are not available for some parameters 
(common), OPGEE supplies defaults based on statistical analysis of 
petroleum engineering literature and commercial data sources (for 
example Oil & Gas Journal (O&GJ)33) enabling the software to estimate 
a field’s CI without complete data21,33.

In this work, field exploration, and drilling and development emissions 
are excluded from CIs reported in prior work1 to estimate GHG emis-
sions associated with production of the next barrel of crude oil (that is, 
marginal upstream CIs). These two sectors hold a very low share of the 
total upstream GHG emissions (see supplementary Fig. S20 of ref. 1).

Global oilfields
In the previous work1, CIs were estimated for 8,966 global active oil-
fields (so-called child fields) supplying 78.9 million barrels per day 
(MMbbl d−1), and capturing ~98% of 2015 global crude oil and con-
densate production34. A combination of government reported data 
(Norway35,36, Canada37–40, Denmark41, UK42, Nigeria43, and US Califor-
nia44, US Alaska45 and US shale oils46), public literature (total of nearly 
800 sources) and proprietary/commercial data sources (O&GJ 2015 
survey33 and Wood Mackenzie (WM) oilfield datasets47) were used as 
input data1. Government and public literature data were collected 
and used for 1,009 global fields, accounting for about 64.3% of global 
crude oil production. Commercial data are utilized for the remainder  
(mostly small fields). We select 2015 as the reference year due to lags in 
some data sources. See our previous study supplementary materials  
document1 for further details.

Economic model
We frame our economic model as a profit-maximization problem. We 
study three different cases described here heuristically with math-
ematical details presented in the Supplementary Information. In the 
perfect competition (PC) case, every field is an independent firm which 
exerts no market power. In this context, the field management solves 
the profit-maximization problem taking the oil price as given. In the 
oligopolistic competition (oligopoly) case, a limited number of firms 
owns many fields. In this context, the field management solves the 
profit-maximization problem knowing that the quantity of oil produced 
by the firm who owns the field as well as its competitors influences the 
oil price. In the cartel competition (cartel) case, a limited number of 
firms coordinate their production decisions via a syndicate. In this 
context, the field management solves the profit-maximization problem 

knowing that the quantity of oil produced by the members of the syn-
dicate influences the oil price. Said differently, in the oligopoly case a 
small number of oligopolistic competitors play a game-in-quantities. 
In the cartel case, a few firms work together to coordinate their pro-
duction decisions around a union. In our model, the members of the 
cartel are the national oil companies associated with OPEC. Due to 
the complexities in modelling the realities of cartel dynamics, our 
cartel case assumes that the cartel operates in unison. The effect of 
a cartel with imperfect coordination would fall somewhere between 
individual company market power (oligopoly case) and the perfect 
cartel (cartel case).

In the PC case, field profits are the difference between field reve-
nues and field costs, which we divide into two macro-classes: (1) costs 
to extract the oil (extraction costs) and (2) costs to discover new oil 
(exploration costs),

Profits = (oil price × volumes of oil extracted)

− extraction costs − exploration costs.

In the oligopoly and cartel cases, the field profits are the same. How-
ever, in the oligopoly case the management takes into consideration 
the effect of the volumes of oil produced by the firm who owns the field 
on the oil price, while in the cartel case the management takes into 
consideration the effect of the volumes of oil produce by the cartel 
on the oil price.

In all three cases, the decision choices are: what volume of oil to 
extract and how much money to spend in exploration48,49. While making 
these decisions the management faces two physical constraints. First, 
the quantity of reserves available at time t equals the reserves at time 
t − 1 minus the volumes of oil extracted at time t plus the quantity of oil 
discovered at time t. Second, the cumulative discoveries at time t equals 
the cumulative discoveries until time t − 1 plus the discoveries at time t.

The first-order condition of the optimization problem with respect 
to the volumes of oil extracted identifies how much money a producer 
is willing to spend to manage one extra barrel of oil. This value is called 
shadow price (of discovered oil),

Shadow price = oil price − marginal extraction cost

+ market power correction term.

The shadow price (SP) equals the difference between the oil price and 
the marginal extraction cost (MC)50 (that is, the cost of extracting the 
next barrel; this quantity is obtained by taking the first-order deriva-
tive of the extraction costs with respect to volumes of oil extracted) 
readjusted by a market power correction term.

If every field is an independent firm with no capacity to influence 
price (that is, PC), the market power correction term shrinks to zero 
and the SP becomes the difference between the oil price and the MC. 
For example, if a field sells its output at US$50 bbl−1 and its MC is 
US$40 bbl−1, the owner of the field is willing to spend (up to) US$10 
to manage one more barrel located in that particular deposit. In the 
case of oligopolistic competition/perfect collusion behaviour, the 
SP takes into account the capacity of the firm/cartel to influence the 
global (average) oil price rescaled by the propensity of consumers to 
decrease the quantity of oil consumed due to an increase in oil price. 
Section 1 of the Supplementary Information provides the mathemati-
cal details of the economic framework linking the concept of SP to 
standard oil economics.

As the SP of a field approaches zero, the management problem shifts 
from ‘how much should I produce?’ (intensive margin choice) to ‘should 
I produce or not?’ (extensive margin choice). In other words, the fields 
with a SP close to zero identify the extensive margin of the oil industry. 
The emissions of this portion of the industry are the most sensitive 
to a drop in oil price caused by a reduction in the transportation fuel 
demand.
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Note that estimating field-level gross profit was the main aim of this 

work, not the net profit. The gross profit is a better representative of 
fields’ geological and physical characteristics and production prac-
tices, whereas the net profit includes additional fiscal regimes (that 
is, royalties, severance taxes, income taxes, production sharing and 
so on), which are complex, country/region-specific and subject to 
change. Incorporating these fiscal terms is out of the capacity and the 
scope of the presented work.

Econometric analysis
All three variables making up SP are unobserved. To estimate them, 
we face three econometric problems: (1) the non-stationary nature 
of oil prices, (2) the endogenous link between costs, quantities and 
reserves, and (3) the uncertainty about the magnitude of the oil demand 
elasticity.

We do not know the price at which a field sells its output because we 
do not have access to commercial agreements between oil producers 
and oil refiners. However, we know the prices of publicly traded oil 
classes. More precisely, we know the landed costs of imported crudes 
in the United States from 1979 to 201851, as well as some key physical 
and chemical characteristics of every traded class52 (see Supplementary 
Fig. 1 and Supplementary Table 1. In the same way, we know the average 
price at which US refineries buy imported crudes53 and the average 
physical and chemical characteristics of crudes imported in the United 
States54. The physical and chemical characteristics most important to 
refineries are the crude density (measured as API gravity) and the sulfur 
content (measured as wt% sulfur).

We regress the difference between the price of a particular oil class 
and the average price at which refineries buy imported crudes on the 
differences between the API gravity of the oil class and the average API 
gravity of imported crudes as well as on the difference between the sul-
fur content of the oil class and the average sulfur content of imported 
crudes55–57. In doing so, we solve the non-stationarity problem while 
assuming that the difference between the price of a particular oil class 
and the average one is a linear function of the oil’s characteristics. We 
allow these linear deviations to be time-specific to adjust for changing 
in demand of transportation fuels as well as for technological change 
within the refinery sector. For example, in 2015 the average oil price 
was US$50.39 bbl−1, its API gravity 31.46, and its sulfur content 1.40%. 
In 2015 increasing the API gravity by one degree increased the value 
of a crude stream by US$0.13 bbl−1, while increasing sulfur content by 
1% lowered the value of a crude stream by US$2.86 bbl−1. In 2016, these 
two quantities were +US$0.03 bbl−1 and −US$0.85 bbl−1. This change 
could be due to (1) a modification in the composition of the demand 
for transportation fuels (for example, more demand for gasoline, less 
demand for diesel), (2) a change in the technologies employed by US 
refineries, and (3) a combination of (1) and (2). Our econometric model 
is flexible enough to take into account all three possibilities (see Sup-
plementary Information section 2.1).

We can use the two structural coefficients, which weight the impact of 
API gravity and sulfur content, to estimate field-level selling prices (see 
Supplementary Information section 2.1, equation 8). Using the API grav-
ity and sulfur content reported in the 2018 WM dataset47, we estimate 
the selling price of 1,933 ‘parent project’ fields over the decade 2009–
2018, thereby obtaining 1,933 × 10 = 19,330 simulated selling prices (see 
Supplementary Information section 2.1 for a detailed discussion on the 
results). See Supplementary Figs. 2 and 3 for a cross-sectional snapshot.

Next, we estimate the MC. An accurate measurement of MC is com-
plicated because it is difficult to determine which factors of production 
are fixed and which are variable. However, the use of detailed account-
ing data, combined with standard econometric techniques, allows 
us to have a good first-order approximation of the MC of different 
types of fields. We use the WM dataset to obtain yearly cost data for the 
same 1,933 fields over the time interval 2009–2018. Then, we obtain 
the extraction costs summing the operational expenditures (OPEX), 

which include consumable inputs, labour, maintenance, repairs, 
accounting costs, license fees, office expenses, utilities and insurance. 
We also include capital expenditures not linked to exploration activi-
ties (non-exploration CAPEX, which include installation, acquisition, 
upgrading and restoring of the physical assets used to extract the oil).

After computing the extraction costs, we regress them against the 
volumes of oil extracted while controlling for the depletion level of 
the field, the geological characteristics of the field, and technological 
trends in the broader oil industry58. We estimate the structural coef-
ficients of the cost function re-expressing the regression in first dif-
ferences. The combination of the longitudinal structure of the dataset 
with the first-difference estimation method allows us to attenuate (or 
in the best case scenario to solve) eventual endogeneity problems59. 
The first-order derivative of the fit returns the estimated MC. Section 
2.3 of Supplementary Information provides all the econometric details.

Finally, for two of the three cases analysed, we compute the market 
power correction term. Its expression is the same in both cases. Namely, 
the capacity of the firm/cartel to influence the average oil price rescaled 
by the capacity of consumers to lower their demand for oil-derived 
products when their prices increase. Said differently, the market power 
correction term adjusts the SP of every field by capturing the effect of 
a unit increase in the production of a specific field on the equilibrium 
oil price and, in turn, on the firm’s profits. Higher market power—cor-
responding to larger firm size—implies, ceteris paribus, a lower shadow 
price, because the effect of a fall in price due to the production of an 
extra unit of crude on the firm total revenues is proportional to the total 
production. For instance, if the production of an extra barrel causes the 
oil price to fall by 0.01 cents, then the firm must trade-off the profits 
generated by selling that extra barrel and a loss of 0.01 cents per barrel 
times the total number of barrels produced by the firm. Thus, account-
ing for market power makes the marginal unit produced by each firm/
cartel less valuable, resulting in lower SPs. This effect is increasing in 
the firm/cartel size. Since the magnitude of the oil demand elasticity is 
object of econometric debate60, we validate our results using different 
point estimates within the interval −0.20 up to −0.35.

Data matching and coverage
The previous work on the CI of global oilfields1 is provided at a child field 
level. Child fields are individual discoveries that are part of a parent pro-
ject. Parent fields are combinations of geologic deposits collected for 
the purposes of a combined valuation. The linkage with the economic 
data, available only at parent level, requires us to match the child field 
CIs1 to parent fields. The majority of the child non-technical oilfields 
from WM datasets47 (accessed 2018)—whose corresponding parent 
fields are available—directly matched with the OPGEE global dataset. 
We paired the remaining with smart string search and string distance 
matching using R as well as manual matching for the countries with poor 
total production coverage. Finally, we conduct an additional treatment 
on two important global producers (Canada and United States) based 
on the available data (see Supplementary Information section 2.2).

After the matching process is completed, we examine the repre-
sentativeness of our techno-economic dataset. In total, we matched 
1,933 parent fields located in 77 countries. Their combined production 
is ~71 MMbbl d−1 and it captures ~90% of the 2015 global crude oil and 
condensate production34. Supplementary Table 5 returns the coverage 
summary of the top 20 largest global producers, and Supplementary 
Fig. 4 zooms in on the geographic location and the CI of the mapped 
fields.

Data availability
The field-level environmental and economic dataset generated during  
the current study are provided as a separate Excel file at https://doi.
org/10.6084/m9.figshare.15029565. The carbon intensity data are taken 
from https://doi.org/10.1126/science.aar6859. The core economic datasets 

https://doi.org/10.6084/m9.figshare.15029565
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https://doi.org/10.1126/science.aar6859


used during the current study (that is, the Wood Mackenzie dataset) are 
not publicly available due to them being proprietary/commercial datasets.

Code availability
The custom software or code is not central to the paper or required to 
support the main results being reported in the manuscript. Thus, all 
custom codes are available upon request.
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