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Perspective

Thinking clearly about social aspects of 
infectious disease transmission

Caroline Buckee1 ✉, Abdisalan Noor2 & Lisa Sattenspiel3

Social and cultural forces shape almost every aspect of infectious disease 
transmission in human populations, as well as our ability to measure, understand, and 
respond to epidemics. For directly transmitted infections, pathogen transmission 
relies on human-to-human contact, with kinship, household, and societal structures 
shaping contact patterns that in turn determine epidemic dynamics. Social, 
economic, and cultural forces also shape patterns of exposure, health-seeking 
behaviour, infection outcomes, the likelihood of diagnosis and reporting of cases, and 
the uptake of interventions. Although these social aspects of epidemiology are hard 
to quantify and have limited the generalizability of modelling frameworks in a policy 
context, new sources of data on relevant aspects of human behaviour are increasingly 
available. Researchers have begun to embrace data from mobile devices and other 
technologies as useful proxies for behavioural drivers of disease transmission, but 
there is much work to be done to measure and validate these approaches, particularly 
for policy-making. Here we discuss how integrating local knowledge in the design of 
model frameworks and the interpretation of new data streams offers the possibility of 
policy-relevant models for public health decision-making as well as the development 
of robust, generalizable theories about human behaviour in relation to infectious 
diseases.

The ongoing COVID-19 pandemic highlights the continuing importance 
of global infectious disease threats, and the need to develop rigorous 
scientific theories to understand, quantify, and forecast the risks that 
pathogens pose to humanity. One of the most important lessons of the 
pandemic so far is that the central forces shaping local and global vari-
ation in disease burden and dynamics have been social, not biological. 
Although substantial biological questions remain unanswered, the 
multiple waves of infection that have been driven by shifting control 
policies and the heterogeneous public response to them1,2, as well as 
the disproportionate impact of the disease on poor and marginalized 
communities around the world3–6, are the defining features of the pan-
demic’s trajectory on local and global scales.

Epidemiological models that describe the spread of infectious 
diseases through populations have been developed during the 
pandemic to understand and predict pathogen transmission and 
to guide public health policies7,8. As a tool for synthesizing current 
knowledge, identifying key drivers of transmission, and planning 
public health policy, such models have a long history in research and 
public health9,10, and are increasingly used to make decisions about 
health policy and global funding11. Although uncertainties about 
biological aspects of pathogen transmission may be problematic 
for modelling, it is the social context—which is important not only 
in terms of model structure and parameterization but also with 
respect to the availability and interpretation of epidemiological 
data—that often presents the biggest challenges for capturing the 
essential features of disease dynamics8,12,13.

Human societies are structured by cultural forces that define social 
relations, particularly between kin, and the spread of infection reflects 
these social structures—starting with the household or family unit, 
and extending to the structure of workplaces and public spaces, and 
the physical layouts of villages, towns, cities, and countries. The pur-
pose of a model, whether purely theoretical or fit to data to inform 
decision-making in a specific context, will determine how detailed these 
social aspects of transmission need to be, with the adage that a model 
should be ‘as simple as possible but no simpler’ likewise taking on differ-
ent meanings depending on the model’s intended function. Intrinsic to 
this decision is a question of scale13: capturing population-level dynam-
ics may not require individual-level detail about social interactions, 
but a model intended to understand local drivers of transmission may.

Data about social relationships that are relevant for modelling patho-
gen transmission are traditionally collected by censuses and other sur-
veys14–16, but the expansion of access to the internet has started to open 
up possibilities for a more expansive, real-time, and global approach 
to the collection of survey data17–19 and the development of relevant 
social science theories about human behaviour. Furthermore, new 
data streams from mobile devices—for example, via social media—are 
offering vast, relatively unexplored datasets about human mobility on 
a global scale20,21. Despite the recent marked increase in the availability 
of these new datasets—a trend that has accelerated during the COVID-19 
pandemic22–24—challenges remain in using them to parameterize trans-
mission models. In particular, the extent to which data from mobile 
phones provide an accurate proxy for contact rates that spread disease 
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remains unclear25,26. In fact, it is still difficult to parameterize social 
aspects of transmission in mechanistic models even in the context of 
sophisticated approaches to modelling and the addition of powerful 
new data. Nevertheless, as social scientists embrace and grapple with 
new data streams, infectious disease modellers have the opportunity 
to use them in the context of transmission models as “a way of thinking 
clearly”9 about the social drivers of epidemics.

Here we describe key social parameters that modellers must con-
sider to effectively capture the dynamics of pathogen transmission 
on different scales. We draw a distinction between models in which 
appropriately disaggregated data about baseline human social dynam-
ics—grounded in local knowledge—can provide mechanistic insights 
into disease transmission, and the challenges introduced when the 
quality, resolution, or paucity of epidemiological and behavioural data 
may constrain predictive power even if the social aspects of a model are 
well-specified. We also discuss the importance of understanding and 
predicting deviations from baseline behaviour that result from infec-
tion and public health policies, an issue that may need to be addressed 
using a fundamentally different kind of model structure. Models are 
increasingly informing target product profiles, global strategies, and 
investments in global public health programs for many infectious dis-
eases. Social and behavioural aspects of transmission are often ignored 
in the name of generalizability and parsimony, with authors adopting 
the language of physics to justify these simplifications while also claim-
ing to provide public health value to specific populations. Too often 
the integration of these models in decision-making processes at the 
national level remains weak. We believe that one of the most important 
challenges for our field is the development of flexible frameworks that 
integrate social contexts that are relevant for disease, a challenge that 
requires closer collaboration between social scientists and infectious 
disease epidemiologists.

Parameterizing local contact rates
All mechanistic frameworks of infectious disease transmission 
make assumptions about how frequently people are exposed to 
disease, for example owing to close physical contact between sus-
ceptible and infectious people (the contact rate), and about the 
probability of infection when exposure occurs. In the well-studied 

susceptible–infectious–recovered (SIR) model—first developed by 
Kermack and McKendrick nearly a century ago27—mixing within a single 
homogeneous population, and therefore infection risk, was assumed to 
be random. The conceptual separation of the transmission coefficient 
into social and biological components was not the norm until the 1980s, 
as it became increasingly apparent that the population dynamics of 
HIV were driven disproportionately by transmission within particular 
demographic groups, which reflected highly non-random patterns of 
sexual contact28–34. This separation provides conceptual differentiation 
of the social and cultural forces that drive uneven infection risk within 
a population from the biology of transmission itself30,35,36, and is an 
essential feature to include to incorporate the effect of heterogeneous 
social interactions on transmission (Box 1).

In reality, assumptions of random mixing are always violated, even 
at the local and within-household scales, and the extent to which mod-
els must account for departures from them will depend on the mode 
of transmission of the pathogen and the purpose of the model. Kin 
structures are at the heart of all communities (Fig. 1). Comprehensive 
diary studies have revealed strong, age-structured mixing patterns 
related to household structures of nuclear families and peer groups 
shaped by schooling and patterns of employment14,16, but these contact 
rates can change over time17 and vary substantially around the world37. 
Recent technological developments have facilitated bluetooth-based 
and GPS studies of contact patterns37–39, providing rich, granular data 
with increasingly large sample sizes, and a foundation for develop-
ing general principles of human interaction that could be used in epi-
demic models. Passively collected, aggregated mobile phone data 
have also become increasingly available on a near real-time basis and 
at scale21. During the COVID-19 pandemic, many modellers have begun 
to examine whether local mobility metrics and foot-traffic data are 
useful proxies for contact rates within populations40–46. This can be 
effective when changes in mobility that occur on a scale that is meas-
urable using mobile phone data are strongly correlated with contact 
rates. For example, at the beginning of the COVID-19 pandemic, Badr 
et al.46 used aggregated mobility metrics from mobile phones to show 
that marked reductions in mobility occurred throughout the USA in 
mid-March of 2020, regardless of local social distancing policies, and 
that this was strongly associated with a drop in COVID-19 growth rates 
across the country. In this case, aggregated mobility data provided a 

Box 1

SEIR models and heterogeneous mixing
Susceptible–exposed–infectious–recovered (SEIR) models provide 
a mechanistic description of the transmission of a pathogen as 
it spreads between people in a population. In the simplest of 
these frameworks, the reproduction number (R0) of a disease 
(the average number of secondary cases arising from a single 
infected individual in an entirely susceptible population) can be 
defined as R0 = bk/r, where b is the probability of infection given 
contact, k is the contact rate between people in the population, 
and r is the rate of recovery. As the contact rate is directly 
proportional to the reproduction number (R0) of a disease, the 
size, speed, spatial heterogeneity, and effect of an epidemic, as 
well as the interventions needed to prevent and contain it, are 
all fundamentally linked to the social and cultural processes 
that generate patterns of exposure. Assumptions must be made 
about how the contact rate scales with population size, and will 
depend on the transmission route of the pathogen. Beyond single 
population models, epidemic models designed to study the spread 
of infectious diseases in subdivided or geographically separate 

populations (also often called metapopulations) also have a long 
history. Early models of this type considered an arbitrary number 
of mixing populations35,54,96–102, and several of these efforts were 
stimulated by the need to develop models that could be used 
to help control the transmission of gonorrhoea in the USA103,104. 
These models established the importance of core groups of highly 
sexually active individuals for the spread of sexually transmitted 
diseases. Similar early frameworks were developed to describe 
the importance of non-random biting of mosquito vectors for 
malaria transmission105,106, and many early models focused on 
the fundamental question of ‘who mixes with whom’28,29,107. Since 
then, a substantial body of theoretical work has been developed 
that examines how heterogeneous local mixing patterns, 
sometimes formalized as explicit contact network structures, can 
influence epidemics within a population108–110, often using stylized 
abstractions of human interactions111–113. The ubiquitous finding 
of these studies is that heterogeneous contact patterns can be 
important for both the spread and control of disease.
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meaningful proxy for the contact rates that drove changes in transmis-
sion on a county level. In general, however, if contact rates are decou-
pled from mobility patterns measured in this way—which the authors 
suggest occurred after April 2020 in the USA25—an understanding of 
local transmission patterns still requires local data collection and/or 
contextual knowledge.

Careful examination of the interactions between people inside and 
outside their households that lead to heterogeneous infection risk 
can produce epidemiological models that yield powerful and gener-
alizable insights, despite their specificity. For example, for the Aedes 
mosquito-borne virus that causes dengue fever, household variation 
in disease incidence has often been assumed to almost exclusively 
reflect the spatial distribution of mosquito vectors. However, by closely 
monitoring people’s movements in relation to dengue clusters in Iqui-
tos, Peru, Stoddard et al.47,48 showed that patterns of inter-household 
mobility associated with visiting friends and family were also a major 
driver of dengue transmission and needed to be considered in addi-
tion to spatial variation in mosquito densities. Similarly, by combin-
ing detailed survey data and precise location information about an 
outbreak of another Aedes mosquito-borne disease, Chikungunya, in 
Bangladesh, Salje et al.49 reconstructed transmission chains to show 
that this disease was highly localized to socially connected households 
within particular communities, and that the 1.5 times higher risk of 
infection among women coincided with the 1.5 times higher likelihood 
that they stayed in the home during the day. The power of these studies 
reflects the combination of social science data and rich epidemiological 
information, coupled with sophisticated analytics. It is not that models 
without these details would be wrong per se, but rather that the addition 
of social science data provides important mechanistic insights into 
how transmission works on this local scale; behaviours and patterns 
of household visiting will define the course of any particular outbreak 
and must be understood when generating context-specific policy.

These concerns in turn emphasize the continuing impor-
tance of on-the-ground data collection from surveys, the value of 

gender-disaggregated data—which the WHO only made standard 
practice for global health statistics in 201950—and the role of local 
knowledge in model and study design. Local knowledge is also key 
for interpreting epidemiological data used to fit and validate mod-
els (Box 2). Despite this, local social phenomena are often left out of 
disease models12, sometimes because they are developed in a differ-
ent context, for use at a different scale, or for academic purposes by 
researchers who are unaware of local realities, or because the social 
science data are time-consuming to collect or unavailable. The rich new 
data sources discussed above raise the question of how much detail 
should be included in order to understand the mechanisms that drive 
disease or to capture population-level dynamics at different scales. 
In all models, a trade-off exists between parsimony and realism that 
hinges on the scale and purpose of the model: while it is certainly true 
that “it makes no sense to convey a beguiling sense of ‘reality’ with irrel-
evant detail, when other equally important factors can only be guessed 
at,”9 it is also the case that a failure to capture the critical deviations  
from assumptions of random mixing may lead to weak predictions, 
misspecified estimates of transmission51, and poor policy decisions. 
Therefore, matching the model and data structures to the scale of the 
research or policy question becomes the most important challenge 
for capturing the social drivers of epidemiological dynamics within 
a population.

Regional mobility and between-population 
transmission
Travel outside the community also plays a key role in spreading dis-
eases (Fig. 1), and spatial models of infectious diseases often incor-
porate travel as a migration rate between populations. Traditionally, 
simple, theoretically derived gravity and radiation models—both 
based on the reasonable idea that large populations attract trav-
ellers, but not requiring specific data about mobility—have often 
been used as fixed parameters to describe mobility dynamics in 
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Fig. 1 | The nature of the kin structures in a community strongly influences 
who mixes with whom. Kin structures can affect patterns of interaction at all 
geographic scales. For example, at the local level, in some cultures extended 
families live and interact within the same house or complex. Kin relationships 
also strongly affect normal patterns of visiting behaviour, as much movement 
in all human cultures involves visiting kin. In places without running water, it is 
common for laundry to be done in streams or rivers, and this is often an 
important social activity, especially for women and children. In some cultures, 

women and men have different roles, including differential participation in 
labour migration and agricultural work, and women may be confined to family 
compounds during the day. At the regional level, families regularly congregate 
for larger-scale social events such as weddings and holidays, with 
longer-distance travel connecting communities. When disease does occur, it is 
often measured by routine surveillance systems that only identify cases when 
treatment is sought, and when they are correctly diagnosed and reported.
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these metapopulation models52–54. The increasing availability of 
mobile-phone-derived data on regional mobility is permitting the val-
idation of these frameworks in real-world settings. The results of such 
studies suggest that gravity models systematically underestimate the 
volume of long-distance travel in our highly connected world, and 
may do poorly in rural areas55–57. They also highlight the importance 
of seasonal patterns of connectivity or asymmetric population shifts, 
such as holiday travel or displacement due to conflict or natural 
disasters. A recent comparison of aggregated mobile phone data 
from three countries showed that seasonal patterns of travel are a 
general feature of modern societies58. For example, in Kenya, this 
seasonal flux in population density, coinciding with school term 
times, was shown to be a stronger predictor of the regional patterns of 
the childhood infection rubella than rainfall and other explanations, 
explaining Kenya’s unusual three-peak pattern of rubella incidence59. 
Using mobile phone data to measure travel patterns in Bangladesh, 
Mahmud et al.60 observed large travel surges occurring out of the 
capital city of Dhaka to all parts of Bangladesh during the Eid festivals. 
In 2017, this holiday coincided with a large Chikungunya outbreak in 
the city, which spread throughout Bangladesh after the holiday, just 
as outbreaks of respiratory viruses in the global north at the end of 
December are often associated with holiday travel61,62.

Mobile phone data therefore provide valuable insights about these 
relative travel routes of millions of people between different places 
for the first time, as well as asymmetric movement patterns and large 
shifts in population density. There are limits to the insights mobile 
phone data streams can afford, however, primarily related to a gap 
in social insight; they are spatially coarse relative to contact patterns 
that spread disease, as previously discussed; they have implicit biases 
(for example, they do not include children and other people with-
out phones); and they usually do not tell us anything about who is 
travelling and why. It will be important to measure and quantify bias 
and representativeness in these datasets26,63,64 as they are used more 
routinely, as well as to engage in meaningful efforts to standardize 
approaches to both analysis and privacy for this relatively new public 
health application26.

Analogous to the problems with random mixing assumptions in 
single-population models, the contact rate between populations 
often reflects travel by particular subsets of the population; in other 
words, the probability of travelling is not randomly distributed, but 
the mobility rates in most models assume that it is, and usually mobile 
phone data are not disaggregated demographically, in order to pre-
serve the privacy of subscribers. When mobility data are available 
that are disaggregated, by gender for example, striking differences 
in mobility may emerge. A study of an urban setting in Latin America41 
illustrates this heterogeneity well—women are both more localized in 
their movements and visit fewer locations than men, which may be 
important for infection dynamics in a given setting, depending on the 
pathogen. Surveys have shown that women with children also travel 
less to urban centres across sub-Saharan Africa compared to other 
demographics56. In a rural setting in Bangladesh, a survey of patients 
with malaria showed similar trends, with men travelling much greater 
distances than women65. Given that global gender roles often follow 
this pattern, it is likely that these findings are general and relevant 
for building robust disease models, especially when combined with 
gender-disaggregated health data. Contextual understanding coupled 
with disaggregated data, often generated using traditional social sci-
ence approaches, is therefore not something we can do away with in 
the era of big data. Rather, these new data streams are uncovering 
dynamics that will be much more powerful when complemented by 
social science data and analysis.

Some of these gender differences in regional mobility are related to 
occupational activities, which is another important factor that drives 
contact rates between populations. Labour migration has long been 
studied by social scientists, but is challenging to incorporate into 
epidemic models. The importance of labour migration in particular 
demographic groups, for example linked to forest and plantation 
work, agriculture and livestock, or gold mining66,67, has been known 
to drive regional patterns of malaria transmission for decades68. In the 
Sahel region of Africa, where the malaria burden is intense and highly 
seasonal, pastoral livestock farming is a key economic activity, and 
pastoralist communities are highly mobile as they search for pasture 

Box 2

Model fitting and validation
Perhaps one of the least measured or understood uncertainties 
associated with models of pathogen transmission is in the 
epidemiological data that are used to parameterize, fit, and validate 
them. In particular, understanding the social and institutional 
environments in which case data are generated and reported is 
essential for any meaningful evaluation of whether a model is 
fit for purpose. For many pathogens, the data available to fit an 
epidemiological model are derived from surveillance systems 
based on the reporting of cases from clinics or hospitals around the 
country to a central government agency (Fig. 1). Any infection that is 
not diagnosed within this system will of course not be captured by 
routine surveillance, and missing cases can occur if infections are 
asymptomatic, if healthcare is not sought by the infected individual, 
if cases are misdiagnosed or there is a lack of diagnostic capacity, or 
if there are reporting delays or failures. These issues are exacerbated 
among marginalized populations who may not wish to engage in the 
health system, and in poorly resourced or designed health systems 
where reporting may be slow, incomplete, and lacking essential 
metadata. In the context of the COVID-19 pandemic, asymptomatic 
infections have made it challenging to assess the total number 
of cases in a community, but additional factors—patchy access 

to diagnostic tests throughout the epidemic, variable testing 
criteria in different contexts, culturally specific treatment-seeking 
behaviours, and misaligned reporting incentives at different levels 
of government—have all contributed to wildly unreliable case 
counts. This has led to challenges in fitting models and estimating 
the reproduction number114,115 during the pandemic. ‘Nowcasting’ 
approaches have been developed to adjust for reporting delays116, 
and these have been successfully adapted for COVID-19 in some 
settings117. In addition, the use of alternative epidemiological data 
that may be more reliable, or are reported in a different way—for 
example, using excess mortality118 or even environmental proxies 
of transmission such as viral concentration in wastewater119—
can provide a proxy for cases. Serological studies that measure 
antibodies in the wake of an infection can also be used to inform 
models about transmission dynamics120,121. However, few models 
consider the institutional and social aspects of epidemiological data 
as more than a ‘reporting rate’ that can be estimated or assumed 
and is usually opaque with respect to mechanism. Exactly how 
social aspects of surveillance should be included in modelling 
frameworks in different settings remains unclear, but is an important 
consideration for future work.
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and water for their livestock, often in areas that expose them to malaria, 
and they exhibit seasonal migration within and between countries 
(Fig. 2). Rapid environmental changes and competition for land have 
adversely affected pastoralist production systems, which has resulted 
in conflicts, volatility in mobility patterns, and various other adaptive 
behaviours that are hard to generalize, but are fundamental to malaria 
transmission and control in the region.

Mathematical frameworks of malaria, which were among the first 
epidemiological models to be developed for any infectious disease69, 
struggle to accommodate this kind of mobility. In fact, projections for 
future scenarios of malaria transmission under various interventions 
in sub-Saharan Africa that are based in part on mechanistic frame-
works may not include any mobility parameters70. In the absence of 
understanding of these social contexts, models may assume that the 
prevalence of infection reflects local transmission characteristics, 
rather than imported infections. However, surveillance data from 
around the world suggest that imported infections actually repre-
sent the majority of cases in some settings. In a study in Nairobi, for 
example, two-thirds of patients with malaria tested in a facility in an 
informal settlement had a history of travel and nearly 80% of those who 
had travelled had visited counties with high malaria transmission71. 
In settings with frequent importation, therefore, policy targets and 
funding should focus on managing infections in travellers, not local 

mosquito control, and models of malaria transmission that fail to 
account for mobility will fail to capture the key socioeconomic mecha-
nisms that drive the disease. Although these human aspects of malaria 
transmission continue to be emphasized as major impediments to 
elimination72, both generalizable and specific mobility frameworks are 
lacking and are often ignored in malaria transmission models that are 
used to guide elimination scenario planning, leading to the mistaken 
general assumption that low incidence regions are straightforward 
elimination targets73.

New data streams—not only from mobile phones but also from 
surveys and malaria parasite genetic data, which yield insights into 
the relatedness of different parasite populations—are allowing more 
sophisticated modelling approaches to identifying the ‘sources’ and 
‘sinks’ of malaria infections, however. Chang et al.74 combined mobile 
phone data with parasite genetic data and surveys to model the spread 
of malaria in rural Bangladesh, for example. Modelling the expected 
flow of parasites using these different inputs as mobility parameters 
showed that there was broad agreement between models; parasites 
moved east to west as people travelled between the forests and more 
populous regions, with the survey confirming the importance of labour 
migration to the forest. In many ways, the relatively sophisticated mod-
elling approach confirmed what the National Malaria Control Program 
already knew—that people get malaria in the forest—but it provided 
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Fig. 2 | Transhumant pastoralists cross through these climatic zones during 
the course of the year. Transhumance is a type of nomadism in which the 
seasonal movement of people is driven by the need for livestock pasture. In the 
rainy season, pastoralists in the Sahel region spread into rich, but short-lived, 
pastures, while they move further south with the onset of the dry season. After 
spending the height of the dry season in the more humid south, they move back 
north before the beginning of the agricultural activities of the rainy season94. 

These seasonal movements involve both cross-border (red arrows) and 
national (blue arrows) travel patterns that shape the lifestyles of these 
populations. The influence of seasonal movements of particular subsets of a 
population on these different national and international scales is challenging 
to measure and capture within transmission models of disease. Adapted with 
permission from ref. 95.
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useful evidence for this local knowledge, as well as estimates about the 
volumes of importation and specific routes and hotspots on which to 
focus interventions. Efforts to combine and validate new data streams, 
as well as more theoretical models such as gravity and radiation  
models57, with surveys and other social science tools will be an impor-
tant next step in the development of general mobility frameworks that 
describe labour migration around the world.

Epidemics are not like the weather
So far we have focused on behaviours that can be included as model 
parameters, such as contact rates between groups and baseline travel 
behaviour. In these cases, more, better quality, or different data about 
contact rates can improve model accuracy. However, human behav-
iour can also change in response to their awareness of, and infor-
mation about, a disease. This can create feedback between the real 
(prevalence-based) or perceived (belief-based) risk of an infection, 
assessed by individuals in a population based on available information, 
and the behaviours that in turn drive its transmission, such as contact 
rate or the use of preventive interventions75. Here, human behaviour 
must be built into epidemiological models, with social parameters 
mechanistically linked to changes in the disease itself or beliefs about 
the disease76.

For endemic diseases for which prevention requires active partici-
pation by affected communities, such as treatment seeking and the 
use of preventive measures, understanding human behaviour in the 
context of risk perception and avoidance is essential for the develop-
ment of dynamic frameworks to predict the impact of public health 
policies. Treatment seeking and adherence to drug regimens in the 
context of tuberculosis77,78, the use of condoms in the prevention of HIV 
transmission79,80, and sleeping under insecticide treated nets to pre-
vent malaria81 all represent examples of complex human behaviours— 
particularly adherence to treatment and other interventions—that are 
challenging to integrate into model frameworks. In fact, these three 
major infectious disease threats are arguably among the most challeng-
ing for which to create robust theoretical frameworks in the context 
of interventions, for this reason82.

Epidemics, and the public alarm they can generate, create particu-
larly strong feedback between behaviour and disease dynamics. For 
example, Epstein et al.83 modelled two interacting contagion pro-
cesses that describe the spread of infectious disease and the spread 
of fear about the epidemic, which leads individuals to effectively 
remove themselves from the population. These social–epidemio-
logical feedback loops lead to more complex disease dynamics than 
expected under a model with fixed behaviours; fear of the disease 
drives behavioural changes in contact rate as people take steps to 
isolate themselves, leading to flattened epidemic peaks and multiple 
waves of infection as the perceived and/or real risk of disease fluc-
tuates. This is exactly what we have observed during the COVID-19 
pandemic, with the social response to specific interventions such as 
social distancing driving the variable course of SARS-CoV-2 incidence 
around the world2. The publicly available data from online information 
sharing on platforms such as Twitter, where information and misinfor-
mation spread in parallel with the epidemic itself, will provide a rich 
source of information for investigating how different societies have 
reacted to the pandemic84. These social media data come with the same 
caveats discussed above in the context of mobile phone data, and the 
representativeness of new data streams in different contexts should 
be reported by data providers, and adequately measured—through 
social science studies, among others—and accounted for in modelling 
research and application.

In this context, the COVID-19 pandemic has created an incredible 
natural experiment on a global scale, with similar policies being 
enacted around the world in diverse social contexts. Similarities 
and differences in the trajectories of local epidemics of the same 

virus reflect the variable populations involved. Some social dynam-
ics related to the contact rate parameters that we have discussed 
above do appear to be generalizable over time and in different  
contexts, and have been repeated around the world during the 
COVID-19 pandemic. In early 2020, Kissler et  al.85 measured 
SARS-CoV-2 prevalence in women who gave birth at different New 
York City hospitals and found that there were marked differences 
across the city, ranging from about 10% in Manhattan to as high as 
50% in the Bronx. Analysis of mobility data from Facebook users over 
the same time period showed that these local variations in incidence 
were strongly associated with continuing commuting behaviour in 
neighbourhoods with lower socioeconomic status, consistent with 
the inability of essential workers to lock down. In fact, this inabil-
ity of lower-income people to reduce mobility as much as those in 
wealthier neighbourhoods has been associated with differential 
disease burden and mortality in cities around the world5,86.

Another characteristic response to policies during the pandemic 
has been an emptying out of urban centres. Throughout history, peo-
ple have always fled urban centres when an epidemic hits, whether 
due to an outbreak of cholera in historical London, or due to a per-
ceived but non-existent outbreak of bubonic plague that caused mass 
panic and the displacement of hundreds of thousands of people from 
Surat, India in 199576. These shifts in population density and increases 
in long-distance travel have important and general implications for 
understanding infectious diseases and designing public health poli-
cies. In response to COVID-19 lockdown policies, mobile phone data 
from around the world have uncovered similar behavioural responses 
to lockdown policies and travel restrictions, with similar dynamics 
occuring in urban centres in the USA, France, Spain, India, and Bangla-
desh87. It is likely that the social and demographic factors that drive this 
urban–rural migration vary greatly in these different settings, with the 
exodus from Manhattan perhaps representing wealthy people going 
to country homes and the movement patterns of people in Bangladesh 
corresponding to the movement of workers in response to the closing 
and re-opening of garment factories. These differences emphasize the 
power of coupling large-scale datasets with local context, and highlight 
the importance of further setting-specific research to untangle the 
general versus local drivers of these behaviours.

There is currently strong interest in the development of national 
epidemic modelling and forecasting centres in the USA and elsewhere, 
with parallels being drawn to the evolution of weather forecasting 
services. The cases described above bring into question the extent 
to which disease forecasting efforts can be compared to weather 
forecasts; however, are shifting behaviours based on local and global 
information about epidemics (and related policies) ever going to 
be predictable in the way that physical laws are? If a weatherman 
forecasts rain and everyone stays at home, it still rains. Not so with 
infectious diseases. We argue that short-term forecasting efforts 
that use ensemble or consensus approaches88–90 are promising, and 
for models with the goal of making predictions rather than under-
standing mechanisms, simple approaches are often adequate, if not 
more tractable and therefore desirable. This is highlighted by disease 
forecasting efforts for COVID-1988, Ebola89, and influenza91, in which 
simple models can produce predictions as powerful as those of more 
complex models over a short timescale. However, a deeper under-
standing of social and behavioural aspects of risk perception and 
decision-making is likely to be needed to make medium-term predic-
tions and mechanistic statements about possible future trajectories 
of epidemics, or to develop models designed to inform interventions 
in different settings.

Key to these latter models will be more research to understand 
how people’s behaviours will change in response to particular poli-
cies; in this case, experimental or quasi-experimental evidence may 
be required to improve the predictive power of models that include 
social–epidemiological feedback mechanisms92. We argue, therefore, 
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that rather than creating one large model to forecast disease out-
breaks, like a weather forecast, developing distributed research capac-
ity that can respond to specific outbreaks in particular contexts by 
designing models flexibly and with feedback from local health systems 
is perhaps a wiser investment.

Thinking clearly about modelling epidemics
If mathematical models are “no more and no less than a way of think-
ing clearly,”9 then it is essential for modellers to think clearly about 
how modelling decisions about social aspects of transmission reflect 
the model’s function. In particular, what social phenomena contrib-
ute to mechanistic aspects of transmission that are important for 
population-level dynamics, are these measurable, and, if not, how 
do they constrain the model’s utility in different contexts? What 
principles should guide decisions about the scale of a model (for 
example, individual versus population) given the questions that are 
being addressed, and what kinds of data are needed to parameterize 
and validate the resulting model?

There are important distinctions between epidemiological models 
developed with scientific goals of understanding disease ecology, 
and epidemiological models developed to inform public health poli-
cies, for example. Models with primarily academic or theoretical goals 
tend to err on the side of abstraction, whereas policy-relevant models 
may have a more ‘realistic’ depiction of contact rates. Indeed, there is 
sometimes an implicit assumption in the infectious disease modelling 
field that integrating setting-specific social interactions in a disease 
model will inevitably detract from its generalizability, limiting its rel-
evance beyond a particular case study. We argue against this dogma 
and propose that for models intended to understand mechanisms 
driving outbreaks—particularly on local scales—“data is the plural of 
anecdote.”93. It is often by understanding specific social contexts and 
integrating insights from multiple applications to different contexts 
that general principles can be drawn. This philosophy requires a dis-
tributed generation of knowledge that is unwieldy to integrate into 
a unified theory, but ultimately can lead to general principles about 
what can, and what cannot, be ignored about local social contexts for 
models with different purposes.

In the public health context, substantial investment in modelling 
capacity is needed at the local and regional levels—not just in the 
context of dynamical modelling, but also for general statistical and 
quantitative capacity—to translate the sophisticated and data-rich 
approaches now available to us into better decision-making. This 
would ensure that models are being used appropriately in the con-
text of policy. For example, many of the decisions we have discussed, 
such as whether a simple or a complex model is needed or whether 
new or different data streams would be helpful, require local literacy 
in quantitative methods that may be lacking. Partnerships between 
academic centres or research institutes and public health agencies 
and governments, as well as better training infrastructure, is therefore 
needed on an ongoing basis and in the context of endemic pathogens, 
so that modelling tools can be developed rapidly when a crisis such 
as COVID-19 occurs.
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