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Coronatine and related bacterial phytotoxins are mimics of the hormone
jasmonyl-L-isoleucine (JA-lle), which mediates physiologically important plant
signalling pathways' . Coronatine-like phytotoxins disrupt these essential pathways

and have potential in the development of safer, more selective herbicides. Although
the biosynthesis of coronatine has been investigated previously, the nature of the
enzyme that catalyses the crucial coupling of coronafacic acid to amino acids remains
unknown'?, Here we characterize a family of enzymes, coronafacic acid ligases
(CfaLs), and resolve their structures. We found that CfaL can also produce JA-lle,
despite low similarity with the Jarl enzyme that is responsible for ligation of JA and
L-llein plants®. This suggests that Jarl and Cfal evolved independently to catalyse
similar reactions—Jarl producing a compound essential for plant development*®, and
the bacterial ligases producing analogues toxic to plants. We further demonstrate
how CfaL enzymes can be used to synthesize a diverse array of amides, obviating the
need for protecting groups. Highly selective kinetic resolutions of racemic donor or
acceptor substrates were achieved, affording homochiral products. We also used
structure-guided mutagenesis to engineer improved Cfal variants. Together, these
results show that CfaLs can deliver a wide range of amides for agrochemical,
pharmaceutical and other applications.

Coronatine 3 (COR) isanimportant phytotoxin produced by bacterial
plant pathogens; it is composed of the polyketide coronafacic acid 1
(CFA), conjugated viaan amide bond to coronamicacid 2 (CMA), anunu-
sual cyclopropylaminoacid (Fig.1a)*?. CORis astructural mimic of JA-lle
(6),aubiquitous plant hormone that is essential for plant development
and defence’. The biologically active stereoisomeris (3R,75)-JA-lle, but
the C7stereocentre rapidly epimerizes at physiological pH to the more
stable but inactive trans (3R,7R) diastereoisomer, which modulates
its activity*. In contrast, COR is configurationally stable, endowing it
withincreased potency and longevity. The conjugation of JAand L-Ile
inplantsis catalysed by the adenosine triphosphate (ATP)-dependent
ligase Jar1 (Fig. 1b), amember of the ANL superfamily’. ANL enzymes
generate acyl-adenylate (acyl-AMP) intermediates that undergo sub-
stitution with various nucleophiles. For example, acyl-CoA synthetases
(ACSs) are common ANL enzymes generating thioesters, which can be
coupledtoanamineby asecondary N-acyltransferase.Jarlisanamide
bond synthetase (ABS), ararer subclass of the ANL superfamily which
accept amine nucleophiles directly without requiring an additional
partner enzyme (Supplementary Fig.1)>%.

CFAis assembled by atype I polyketide synthase via the cyclization
of ap-ketothioester intermediate (Fig. 1c)*”"°. The biosynthesis of CMA
occurs viaanonribosomal peptide synthetase (NRPS)-mediated cryptic
chlorination and cyclization (Fig.1d)'* 2. A putative ligase (CfaL) within
the Pseudomonas syringae COR biosynthetic gene cluster is predicted
to couple CFA and CMA to form COR (Fig. 1a, Supplementary Fig. 2aand

Supplementary Table 1). Previous attempts to characterize this ligase
have been unsuccessful®®. Other plant pathogens possess a COR-like
biosynthetic gene cluster*?, including Streptomyces scabies which
has a putative CfaL and CFA biosynthetic genes, but no CMA pathway
(Supplementary Fig. 2b and Supplementary Table 1)"*. Consequently,
this strain produces predominantly CFA-L-lle 4, along with smaller
quantities of L-Val and L-allo-lle adducts, which have also been detected
from P. syringae'®™®. As CFA must be coupled to an amino acid to elicit
biological activity, we sought to characterize the key Cfal. enzymes to
enable new routes to COR-like phytotoxins as potential herbicides”. We
were alsointerested in exploring the relationship between the bacterial
CfaL and the functionally related plant ligase Jarl.

As well as being fundamental in nature, amide formation is one of the
mostwidely used synthetic transformations. Although couplingacids and
aminesisrelatively simple, it often requires three steps, protect-couple-
deprotect, toinstall each amide. Stoichiometric quantities of expensive
and deleterious coupling reagents are typically required and purification
canbe problematic®. While some progress hasbeen made in the develop-
mentof chemocatalytic methods foramide synthesis, these have notbeen
widely adopted® . Consequently, there is interest in the development of
enzymaticalternatives®*°%. Inthiswork, we characterize Cfal ligasesand
demonstrate how they are highly versatile biocatalysts for the synthesis of
ubiquitous amides. Additionally, using structure-guided mutagenesis, we
generateimprovedligases providing more sustainable, alternative routes for
productionof pharmaceuticals, agrochemicalsand other valuable materials.
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Fig.1|Biosynthesis of coronatine (COR) and jasmonyl-L-isoleucine (JA-Ile).
a, Bacterial CfaL enzymes are predicted to ligate coronafacic acid (CFA) 1with
coronamicacid (CMA) 2 or L-amino acids to generate phytotoxins, including
COR3and CFA-lle4.b, Inplants, the enzymeJarlligates jasmonicacid (JA) and
L-isoleucine to produceJA-lle epimers (3R,7S)-6 and (3R,75)-6. ¢, Polyketide
synthase (PKS) assembly of 1from succinic semialdehyde. PKS consists of

Cfal or
Cfab

Characterization of the Cfal family

Overproduction of the CfaL from P. syringae (PsCfal) in Escherichia
coliresulted in only trace amounts of active enzyme. However, assays
demonstrated that PsCfal catalyses the ATP-dependent coupling of
L-isoleucine and CFA, obtained from acid hydrolysis of coronatine,
confirmingthe function of Cfal for the first time (Supplementary Figs. 3
and4). Thelow quantity of PsCfaL available prevented full characteriza-
tion, and so alternative CfaL homologues were explored. Inaddition to
the putative S. scabiesligase (SsCfalL), other candidates located within
putative COR-like clusters were selected from BLAST analysis (Supple-
mentary Fig. 2). Of these, PbCfaL from Pectobacterium brasiliense and
AlCfaL from Azospirillum lipoferum were chosen for characterization,
asthey are predicted to be more amenable to crystallization (Supple-
mentary Table2). While P. brasilienseis awell-known plant pathogen®*,
A. lipoferum is aroot-dwelling, nitrogen-fixing plant symbiont that is
not known to produce coronatine®.

SsCfaL was overproducedin £. coli (Supplementary Fig. 5) and assays
withsynthetic (+)-CFA", L-isoleucine and ATP showed the direct forma-
tion of CFA-L-l1le 4 viaa CFA-AMP intermediate (Supplementary Fig. 6),
confirming CfaLisan ABS enzyme.Inaddition, SsCfalL also accepted the
aromatic CFA variant 7 which when coupled to L-lle forms coronalone, a
simplified synthetic COR analogue with promising herbicidal activity®.
Givenadenylationoccurs inthe absence of amine substrate, the rate of
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adenylation can be measured in isolation (Extended Data Table 1 and
Supplementary Fig. 7). Therate of adenylation (k) was greatest with
(+)-CFA but the aromatic analogue 7 was found to have alower Michaelis
constant, K. Both (3R,7R)- and (3S,7S)-enantiomers of trans-JA 5 were
also accepted, albeit at a lower level than CFA or 7, with a preference
towards the natural (3R,7R)-5 stereoisomer. Thisindicates that, despite
low amino acid sequence similarity (16%), the bacterial SsCfal and plant
Jarlboth catalyse the ligation of JA with L-lle (Supplementary Fig. 8).
Reactions with deactivated enzyme confirmed that the adenylation of
5 and the subsequent reaction with L-Ile are both enzyme-catalysed.
Samples of trans-JA (Extended Data Table 1) containa minor amount of
theless stable cis epimer, owing to facile C7-epimerization (Fig.1b)*. To
explore the stereoselectivity of SsCfal further, all four stereoisomers
of configurationally stable 7-methyl-jasmonic acid were synthesized
(Supplementary Fig. 9). Initially the trans and cis diastereoisomers of
7-methyl-jasmonic acid were separated and tested as aracemic mixture.
However, these were poor substrates for SsCfal, hence the resolu-
tion of all four stereoisomers was not carried out. The selectivity of
SsCfal was further tested by incubating CFA 1 or (+)-jasmonic acid 5
with 21 proteinogenic amino acids, resulting in awide range of amino
acid conjugates (Supplementary Figs. 10 and 11). Hydrophobic amino
acidssuchasL-isoleucine and L-valine were preferred by SsCfalL which
reflects the COR-like metabolitesisolated from S. scabies'. No activity
was seen with D-amino acids, or with primary amines and dipeptides
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Fig.2|Structure of PbCfaL.a, Mainimage, X-ray crystal structure of PbCfaL
(2A)inthe ‘open’ or ‘adenylation’ conformation (PDBID, 7A91). PbCfaL has a
large N-terminal region (residues 1-403), shownin blue, and a flexible
C-terminal region (residues 403-516), showninred. Theboxed regionand
magnified inset highlight the active siteregion, whichis shownwith7
co-crystallized; labelled residues are conserved between all four CfaLsin this
study. 7 lies 3.6 A from a conserved tryptophan residue (W220), which probably
helpstoalignthe substrate viam-ttstacking interactions. b, PbCfaL
superimposed onto McbA (gold; PDBID, 6SQ8)%, the closest structural
homologueto PbCfaL.In the ‘adenylation’ state, the two structures show high
levels of similarity. In this state the carboxylic acid binding site (shown) is
located between the N-terminal and the flexible C-terminal regions and is
solventaccessible. ¢, PbCfal superimposed on McbAin the ‘closed’ state (also
referredto as the ‘thiolation’ state inrelated ACS enzymes). Like all ANLs, the
C-terminal region of McbA undergoes alarge rotation (directionindicated by
dashedred arrow) tolie on top of the carboxylicacid binding site, trapping the
adenylated intermediate before amine attack. The more rigid N-terminal
regiondoes not substantially change conformation. We would expect the
C-terminal region of PbCfaL to undergo a similar rotation during catalysis.
Structural alignment was performed with Chimera (version1.14) MatchMaker.

(Supplementary Fig. 12). AlICfaL and PbCfaL, expressed from codon
optimized synthetic genes, were seen to be functionally similar to
SsCfal, although with lower activities (Supplementary Fig. 13).

The structure of a CfaL ligase

Crystallography trials revealed that only PbCfal yielded crystals of
sufficient quality for structural studies. A PbCfaL structurein the ade-
nylation conformation was solved to 2 A resolution (Fig. 2), which is
consistent with the ANL superfamily. Despite sharing low sequence
identity (<20%), PbCfaL showed substantial structural similarity (>70%)
to several other ANL ligases from a variety of organisms, including
bacterial benzoate CoA ligases and firefly luciferases (Fig. 2b, Sup-
plementary Table 3). By contrast, PbCfal shares very little structural
similarity with the catalytically equivalentJar1 (30%), suggesting that
the two enzymes evolved independently (Supplementary Fig. 14).
Plants are known to possess other ACSs that do share high structural
homology with PbCfaL (Supplementary Table 3). However, Jarl and
related plant acyl-AMP forming enzymes that conjugate salicylate or
indole-6-acetic acid (IAA) with amino acids appear to have evolved
separately and specifically for plant hormone signalling®.

The structure of PbCfalL is composed of a large N-terminal domain
(residues 1-403) and a smaller, flexible C-terminal domain (residues
403-516, Fig. 2). As with other members of the ANL superfamily, it
is likely that the C-terminal domain undergoes a large rotation fol-
lowing acyl-adenylate formation to close off the acyl binding pocket
and form the amino acid binding site (closed conformation) (Fig. 2).
Co-crystallography of PbCfal with 7 revealed that the extremely
solvent-accessible acyl binding pocket lies between the two domains
(Fig.2, Supplementary Fig. 15). Sequence alignment between the Cfals
in this study showed a small number of conserved residues (Supple-
mentary Fig. 16), with only W220 likely to make direct contact with 7,
probably aligning the carboxylic acid viamt-tt stacking, explaining the
higher binding affinity of 7 versus CFA (Fig.2). Other conserved residues
around 7 probably define the width and depth of the binding pocket.
When aligned with the most structurally similar proteins from the Pro-
tein Data Bank (PDB; Supplementary Fig. 17) there are few conserved
sequences, the most similarity occurring in the ATP binding SSGTTG
motif (residues 168-173)*. Despite many attempts, determination of
a PbCfaL structure in the closed conformation with AMP and amino
acid bound could not be achieved.

CfaL substrate scope and engineering

We next explored if the synthetic scope of Cfal enzymes could be
extended towards other amide targets. The CfaL enzymes were found
to possess extremely broad substrate tolerance, accepting a variety of
aryl and heteroaryl carboxylic acids 8-29 as well as aliphatic carbox-
ylic acids 30-46, including several chiral compounds 39-46 (Fig. 3,
Extended Data Table 2). Several acyl-donor substrates possessed
other reactive functionalities, such as electrophilic ketones (11, 35,
43,45), alkenes (33), as well as nucleophilicalcohol (40, 44) or amine
groups (13,17,18,19, 46), which would require protecting for tradi-
tional coupling chemistries, but do not interfere with the enzymatic
ligation to amino acid acceptor substrates. In addition to proteino-
genicamino acids (Fig. 4a, Extended Data Table 3), CfaL enzymes also
accept awide range of non-proteinogenic amino acids 47-61, includ-
ing common pharmaceutical building blocks, with a preference for
hydrophobicamino acids (Fig. 4b, c, Extended Data Table 4). Although
polar, particularly charged, amino acids are not well accepted by CfaL,
both L-2,4-diaminobutyrate 47 and L-ornithine 48 can be selectively
acylated at the a-amino group, obviating the need for protection of the
side-chain amino group (Fig. 4c, Supplementary Fig.17).

In general, SsCfal and AlICfaL both performed better than PbCfaL
(Figs. 3 and 4, Extended Data Tables 2-4), which was found to be less

Nature | Vol 593 | 20 May 2021 | 393



Article

a b —~
. I o
N . e CfaL Y oy 9 3
L\_"\ﬂ/o'" + 2SNy T k‘»—‘\[(N"' OH D
—_ S
! ’ s 2 2 23322
o S Q 98 @
& 2 &g f£Z gcg
100
o o o o] 8
@)k \@OH OH )K@)A\OH /@J\OH 9
HO 10
10 11 12 11
12
o o NH, O NH, O 134
cl
/©)‘\ /©)\OH /\/©)‘\0H @XOH \©/u\OH .
15
< 14 £l 15 16 17
16
17
F O OMe O o O o 18
HN 19 20 21 22 20
cl 21
22
Heteroaryl o o o H o 23
N
N on N O}—@ X oH 24
N\ ) N 25

&
e
ot
8*

Fig.3|Carboxylicacid substrate scope. a, Diverse structures of carboxylic
acid (donor) substrates assayed with L-lle and CfalL enzymes. b, Percentage
conversion for ligation of carboxylic acids 8-46 with L-lle catalysed by CfaL
enzymes (column headings). Assays were carried out with wild-type and

thermally stable and frequently precipitated during the reaction time-
scale (Extended DataFig.1). Onthe basis of our crystallographic studies,
we sought to improve the activity and stability of PbCfaL viarational,
structure-guided mutagenesis. Sequence comparison between the
four Cfal enzymes (Supplementary Fig. 16) identified few obvious
distinctions. However, one noticeable difference was found on the
flexible hinge-region linking the N- and C-terminal domains (at posi-
tion 395, Extended Data Fig. 2a). This position is solvent-exposed and
likely to be involved in the conformational changes required to shift
between the adenylation (open) and amidation (closed) states of CfaL.
The large, charged arginine residue that is located in this position of
PbCfaL is orientated out from the enzyme, while the same positionin
the other CfaLs and ANLs included in the sequence alignment (Sup-
plementary Fig. 16) is occupied by a small and uncharged glycine. A
PbCfaL(R395G) mutant showed increased activity against the panel
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engineered CfalL enzymes (25 uM), carboxylic acids 8-46 (2 mM) and L-1le
(S5mM). Conversiontoamide products was determined by HPLC analysis
following 20 hincubation. Actual conversion values and errors can be foundin
Extended Data Table 2.

of carboxylic acids and some amino acid substrates (Figs. 3 and 4,
Extended Data Tables 2-4). An X-ray crystal structure of this mutant was
determined, which revealed no overall structural changes (Extended
DataFig.2a). However, the melting temperature (7,,) of PbCfaL(R395G)
increased by 5 °Crelative to the wild type, suggesting that thereplace-
ment ofthissolvent-accessible, charged R395 is beneficial for stability
(Extended DataFig.1).

Asubsequent double mutant, PbCfaL(R395G/A294P), showed a fur-
therincreased T, and slightlyimproved activity (Figs.3 and 4, Extended
DataTable 2-4). Thelocation of this second mutationis within a highly
conserved ATP binding loop (G289-1297) that is significantly largerin
PbCfal thaninotherrelated structures, and which may partially occlude
the ATP binding site (Extended DataFig. 2b). The proline found at this
locationin SsCfaL, PbCfaL and several other structurally similar ligases
may aid in rotating this loop out of the binding site (Supplementary
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d, Reversed-phase (RP)-HPLC trace of ligation product of L-Dab 47 (green) and 9
(m-methylbenzoate, red) catalysed by SsCfalL, compared to HPLC traces of
synthesized standards of the two possible products 62 and 63. Product of the

Fig.16). Using these two PbCfalL. mutants, which no longer precipitate
duringthereaction, we were able to substantiallyimprove the conver-
sions of both the panel of carboxylic acid and amino acid substrates
(Figs.3and 4), demonstrating that minimal structure-guided mutagen-
esis can be used to engineer improved CfalL variants.

Synthetic applications of CfaL

To demonstrate the synthetic utility of Cfal, we sought to establish
preparative-scale ligation reactions. Accordingly, conditions were
optimized for the ligation of carboxylic acid10 and L-1le (Fig. 5a). Reac-
tion of 10 (at 15 mM concentration) with PbCfaL(R395G/A294P) cell free
lysate afforded amide 64 in near quantitative conversion as determined
by high-performance liquid chromatography (HPLC). The reaction
mixture was subjected toasimple solvent extraction, providing 1.48 g of
crude 64 from 400 ml of reaction mixture, which would be sufficiently
pure (>92% purity by NMR, Extended Data Fig. 3) for further synthetic
derivatization. Purification of the extract by column chromatography
provided1.37 g of pure 64 in 87% isolated yield (Fig. 5a). To avoid the use
of stoichiometric quantities of the expensive co-factor ATP, we repeated
the ligation of 10 and L-lle at the same scale, omitting ATP and instead
introducing an ATP recycling system consisting of a polyphosphate

t (min)

125 1.50

enzymatic reaction (bottom trace) shows selective acylation of the a-amino
grouptogive amide 62. All assays were carried out with wild-type and
engineered Cfal enzymes (5 pM), carboxylicacid 9 (ImM) and amino acids
(2mM). Conversion toamide products was determined by RP-HPLC analysis
following 20 hincubation. Actual conversion values and errors can be found in
Extended Data Tables3and 4.

(PolyP) kinase enzyme (CHU)* and an inexpensive PolyP phosphate
donor (Extended Data Fig. 3). Although the isolated yield was lower
inthis case (52%), there is further scope for optimization. While CfaL
cell lysate shows good activity for up to 12 h, we sought to improve
enzyme stability/longevity through immobilization of CfaL in the form
of a cross-linked enzyme aggregate (CLEA)*. PbCfaL(R395G/A294P)
CLEAs were shown to retain activity over an extended period of five
days, and could beisolated and recycled in five sequential ligation reac-
tions (Extended DataFig. 4a). Purified PbCfaL(R395G/A294P) was also
showntotolerate several solvents, including MeOH, ethylene glycol and
the widely used ‘green’ solvent 2-methyl THF (Extended Data Fig. 4b).

To further demonstrate the synthetic potential of Cfal, a series of
pharmaceutical-relevant scaffolds were prepared in excellent yields
(Fig. 5a, b and Supplementary Fig. 18). For example, amides 65 and
67 were prepared in >70% isolated yields at around 100 mg scale. Fur-
thermore, ligations of cinnamic acid 33 and indole carboxylic acids
26 (Fig. 3) with cyclopropyl amino acids 56 and L-Leu, respectively
(Fig. 4), produced amides 68 and 69, which are precursors for the
manufacture of promising SARS-CoV-2 protease inhibitors, including
PF-07304814 (Pfizer; inphasel clinical trials) (Fig. 5a,band Supplemen-
tary Fig.18)***, Similarly, ligation of the thiazole carboxylicacid 29 and
O-methyl-L-serine 49 provided amide 70; this is a key component of
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Fig.5|Synthetic potential of CfaL enzymes.a, Amidesincluding
pharmaceutical scaffolds synthesized by CfaL enzymes. b, Comparison of
percentage conversion for CfaL enzymesin the synthesis of 65-70. ¢, Kinetic
resolution of racemic carboxylicacids (donor). Absolute configurationand
diastereoisomericratios (d.r.) were determined by RP-HPLC using synthetic
standards. Inset, the HPLC chromatogram for (S)-71formed in the kinetic
resolution of racemicibuprofen (41) with L-1le and AICfaL (E=94).

d, Comparison of the enantioselectivities of the different enzymes. Values of
E=15-30are considered moderate-good, E>30 are excellent*. For
conversions <30% the calculation of Eis unreliable, so the values were not
determined (ND). e, Kinetic resolution of racemic amino acid (acceptor) 57
(2mM) with acid 9 (1mM) and AlCfaL (5 uM) (E>200) following 20 hincubation.

oprozomib, whichisin phasell clinical trials for treatment of multiple
myeloma*?. Probing the limits of potential Cfal-reaction scope, we
found that the mutant PbCfaL(R395G/A294P) also allowed the gen-
eration of amide precursors required for the synthesis of the antiviral
telaprevir and the anti-cancer agent bortezomib (Extended DataFig. 5).
These products were only produced inlow quantities, but with further
engineering it may be possible to synthesize these precursors at higher
levels. Overall, these reactions (Fig. 5) clearly demonstrate how struc-
turally diverse carboxylic acids can be combined with proteinogenic
and synthetic amino acids to produce pharmaceutically important
compounds.
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Theyieldreportedis based on 9 which equatestoayield of 33% based on 57
(2equiv. used). Inset, chiral HPLC analysis of the amide product showing a
single enantiomer, (S)-77. Enantiomericratio (e.r.) values determined by chiral
HPLC.Isolated yield preparative-scale synthesis of 64 with PbCfaL(R395G/
A294P) lysate10 (15 mM), L-lle (45 mM) and ATP (36 mM) incubated for 24 h.
bIsolated yields of about 100-mg-scale reactions catalysed by SsCfalL cell lysate
with carboxylicacid (5 mM), amine (15mM) and ATP (15 mM) following 24 h
incubation. “Conversions determined from HPLC peak arearatios, following
assaysincluding CfaL enzymes (25 uM), carboxylic acids (2mM) and amino acid
(6 mM) incubated for 20 h. “Evalue was calculated from average d.r.ore.r.
values, as described previously*. Percentage conversions and d.r. values
represent means where n=3, error denotess.d.

The potential of CfaL for use in kinetic resolution of racemic syn-
thetic carboxylic acids was also investigated (Fig. 5c, d). Notably, race-
mic ibuprofen could be resolved, with excellent enantioselectivity
(E=94)*"leading to the biologically active (S)-ibuprofen-L-lle amide
71. Amide conjugates of ibuprofen and related NSAIDs with amino
acids have been explored extensively for applications as prodrugs and/
or hydrogel-based nanomedicine***. Five other racemic acids were
subjected tokinetic resolution, affording amides 72-76, with modest
Evalues (Fig. 5c,d and Supplementary Fig.19). Inthe case of amide 73,
the mutant PbCfaL(R395G) was superior to any of the wild-type CfaLs,
illustrating how protein engineering could be used to achieve more



effective kinetic resolutions. Finally, we sought to exploit the high
selectivity of Cfal for L-amino acids to effect the kinetic resolution
of racemic amino acids. Amino acid 57 was selected as this is a com-
mon pharmaceutical building block, which would normally require
multi-step asymmetric synthesis or laborious resolution and protec-
tion beforeacylation or peptide coupling. As anticipated, the reaction
between carboxylic acid 9 and racemic amino acid 57 proceeds with
excellent enantioselectivity (£ >200), with none of the R-configured
enantiomer evident in chiral HPLC when SsCfaL or AlCfaL was used
(Fig. 5e, Supplementary Fig.20). This demonstrates how racemic car-
boxylic acid and racemic amino acids can be resolved during amide
bond synthesis, using Cfal, avoiding more laborious asymmetric syn-
thesis or traditional resolution procedures, and the need for protective
group manipulations.

Discussion

The results presented here demonstrate the role of CfaL enzymes in
biosynthesis of theimportant coronatine family of phytotoxins. BLAST
analysis reveals that CfaL-like ligases appear in a large number of dis-
tinct COR-like clusters from across a broad range of microorganisms,
including bacteria where COR-like phytotoxins have not been observed,
suggesting that CfaLs and the biosynthesis of COR-like phytotoxins are
widespread. CfaLs can also catalyse ligation of JA with Ile to generate
the planthormoneJA-Ilein anidentical fashion to the plantligase Jarl.
Thelack of sequence and structural similarity betweenthe CfaL andJar1l
suggests that the two enzymes have evolved largely independently in
bacteriaandin plantsto performvery similar reactions. Inaddition to
potential agrochemical applications, the CfaL family of enzymes can
be used to produce awide range of pharmaceutically relevant amides.
Used in combination with improving ATP recycling techniques***,
these enzymes could become powerful synthetic tools offering major
advantages over other biocatalysts developed for amide synthesis.
For example, the combination of ACS and N-acyltransferase enzymes
have beeninvestigated for amide synthesis*s, However, large numbers
of ACS and N-acyltransferase enzymes had to be screened to find pairs
of enzymes with matching selectivity*®. In addition to low substrate
scope, this systemalso requires use of two expensive co-factors as well
asengineering of two enzymes for further optimization, rather than just
one. Other reports describe the use of standalone NRPS adenylation
domains to synthesize amides®**. In these examples only the carbox-
ylicacid activation step is directly enzyme catalysed, the subsequent
amidation proceeds spontaneously, requiring a large excess (about
100 equiv.) of the amine, whichis not viable for many syntheses. CfalLs
directly catalyse both steps and can therefore utilize acids and amines
with more efficient stoichiometry. Taken together our results show that
CfaLs have potential for the synthesis of diverse range of important
amide products, offering clear advantages over traditional synthetic
methods and other biocatalytic approaches.
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Extended DataFig.2|Rational mutagenesis of PbCfaL. a, Structural
comparison between PbCfaL (left) and the mutant PbCfaL(R395G) (right). R395
(circled) of PbCfaL (PDBID 7A9I1) isin the hinge region between the N-terminal
domain (blue) and the flexible C-terminal domain (red). In PbCfaL(R395G) (PDB
ID 7A9)) thislarge arginine residueis replaced by amuch smaller glycine
(circled) thatisfoundinthe other members of the CfaL family and many other
similar ANLligases. The overall structure of this mutant exhibits no other
substantial structural difference from that of the wild type. b, Overlay of
PbCfaL with three published ATP-dependentligase structures (in ellipse)
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PbCfaL(R395G)

showingthe conserved ATP binding location. When superimposed, PbCfaL
(PDBID 7A9I, blue), McbA (AMP bound, PDBID 6SQ8, red), GrsA (ATP bound,
PDBID1AMU, green) and AuaEll (anthranoyl-AMP bound, PDB ID 4WV3, light
brown) show the conserved location of ATP binding. The correspondingloop in
PbCfaL (inset, arrowed) is larger thanin the other structures which may affect
ATPbinding. Thelocation of this region within the structure of PbCfaL (grey) is
alsoshown for reference. Structural alignment was performed using Chimera
(version1.14) MatchMaker.
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a, Preparative-scale synthesis of 64 from 10 and L-Ile catalysed by

PbCfaL(R395G/A294P) (lysate), with either the addition of ATP (87% isolated

yield) orrecycling the endogenous ATP presentin the lysate using the kinase

(CHU) and polyphosphate (polyP) (52% isolated yield). b,’'H-NMR spectrum of

crude product 64. ¢, >*C-NMR spectrum of crude product 64.



0
on PbCfal 0
+ (R395G/A294P) u COH
R
HNT COH
: : ATP
10 L-lle 64
a

100

— 80
&
c
kel
2

9 60
[ —4
o
(&)
Q
&

=4 40
@
e
[
a

20

0

Reaction 1 Reaction2  Reaction3 Reaction4  Reaction5
Recycled Reaction
100

Percentage Conversion

m10%

o e
90 k m
80
70
60 I z
50
40 20%
30
2 @30%
10
0

S 3 > e o) > S
& Q 8 \ d
$®‘ & & & g W @‘2\
& R S 9 ©
N & & & v
& v ‘\\}
<&
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a, Catalysed by PbCfal (R395G/A294P) CLEAs. Reactions (100 mM Tris-HCI,

10 mM MgCl,, 10 MM ATP,1mM 10, 3 mM L-isoleucine, 50 ml total volume) were
runfor24 h;the CLEA (cross-linked enzyme aggregate) was then removed,
washed, and reintroduced to anidentical reaction. While activity was seen to
reduce over the 5days, the CLEA still retained high levels of productivity even
after Srecycles over 5days, whereas cell lysates generally precipitated and lost
allactivity within12 h. Although CfaL undergoes extensive conformational
changes during catalysis, encapsulating it within CLEAs shows the potential of

immobilization to extend the functional lifespan of the CfaL. More
sophisticated immobilization techniques may have the potential to further
retain activity. Conversion values were calculated from HPLC peak arearatios
of product and starting materials, and represent meanswhere n=>35, error bars
denotes.d. b, Catalysed by purified PbCfaL(R395G/A294P), showing
percentage conversions of 10 and L-1le in the presence of various solvents and
atdifferent concentrations. Conversion values were calculated from HPLC
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Extended DataFig.5|LCMS analysis and extracted-ion chromatograms towards anti-cancer agent bortezomib via the synthesis of 112 by CfaL (see
(EICs) of fragments of telaprevir and bortezomib synthesized by reactionattop). Theexpected product of the reaction was detected by LCMS
PbCfaL(R395G/A294P). a, Proposed route towards the antiviral agent (top trace, expected m/z270.0884, observed 270.0878 [M-H]"). An additional
telaprevir by CfaL (seereactionat top). Theexpected product of the reaction, peak consistent with anL-Phe dipeptide (113) was also detected (bottom trace,
110, was detected by LCMS (top trace, expected m/z262.1197, observed expected m/z311.1401). Thisindicates that .-Phe can functionasboth acyl

262.1193[M-HI"). Additional peaks consistent with dipeptide 111, formed from donorand amineacceptor.c, Thereaction between carboxylic acid substrate
condensation of two cyclohexylglycines, 58, were also detected (bottomtrace,  (9), whichisagoodsubstrate for the enzyme, and cyclohexylglycine (58) gives

111aand 111b, expected m/z295.2027, observed 295.2036 [M-H]"). Although only the desired product (114, top trace, expected m/z274.1449, observed
CfaL are highly selective for L-amino acid substrates, the appearance of two 274.1460 [M-H]). No cyclohexylglycine homodimer (dipeptide 111) was
products of the same mass suggests formation of diastereomers, whichmaybe  evidentinthis case, indicating thathomocoupling of 58 only takes place when
duetoalack ofenantioselectivity in the adenylation step forming the acyl carboxylicacid (acyl donor) substrates that are not well accepted by CfaL are
donorwhenracemic cyclohexylglycine (58) is used. Thisindicates that 58 can used.

functionasbothacarboxylicacidand anamine donor. b, Proposed route



Extended Data Table 1| Table of kinetic parameters for adenylation reactions

b by L

., ~CO,H
CO,H CO,H

Substrate 1 7 (BR7R)-5 (38,78)-5 ()-5

Vpnax (MM =1 min-1) 10.1 (+ 0.4) 5.6 (+0.1) 2.16 (+ 0.1) 1.75 (+ 0.06) 1.9 (+ 0.04)

K., (MM) 0.2 (+0.02) 0.07 (+ 0.01) 0.08 (+ 0.02) 0.12 (+ 0.02) 0.18 (+ 0.01)

Koo (min-1) 40.3 (x0.4) 22.6 (+0.1) 8.63 (+ 0.1) 7.0 (+ 0.06) 7.55 (+ 0.04)

Keat /K (Min=1 mM-1) 199 (+0.4) 343 (£ 0.1) 112.1 (£ 0.1) 58.9 (+ 0.07) 41.4 (£ 0.04)

These reactions were catalysed by SsCfal and used substrates CFA (1), aromatic variant 7, enantiomers of trans-jasmonic acid 5 ((3R,7R)-5
and (3S,7S)-5) and racemic (+)-5. The JA samples also contain a small amount of cis-epimer. Michaelis—-Menten plots can be found in Sup-
plementary Fig. 7. Values represent means, error denotes s.d., withn > 3.
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Extended Data Table 2 | Percentage yield of ligation reactions of carboxylic acids

Percentage Yield

car/':izym SsCfal AICfal PbCfal (iggf:c_';‘) - ;;';c/anng gpy  Product
8 75 (£2) >99 (£ 1) 30 (£ 1) 88 (£0.2) 98 (£2) 78
9 >99 (£ 5) >99 (4) >99 (2 4) >99 (£ 1) >99 (£ 6) 79
10 >99 (+ 8) >99 (£5) >99 (£ 16) >99 (£ 4) >99 (£ 5) 64
1 >99 (2 1) >99 (£ 4) >99 (£ 2) >99 (£ 3) >99 (£ 1) 80
12 28(£0.2) 44 (£0.4) 4(0.01) 21(£0.2) 23(£0.1) 81
13 41(£0.3) 10(£0.3) 3(£0) 5(£0.1) 5(£0.1) 82
14 >99 (2 1) >99 (0.3) 3(£0) 13 (1) 10(20.5) 83
15 27 (£0.4) 3(£0.2) ND ND 0.4 (+0.04) 84
16 28 (¢ 8) 63 (¢ 5) 43 (£ 8) 41(£6) 59 (2) 85*
17 >99 (2 4) 96 (+ 12) 64 (£0.2) >99 (£ 2) >99 (+ 8) 86
18 >99 (2 9) >99 (£ 2) >99 (£ 1) >99 (£ 1) >99 (+ 4) 87
19 43(£1) 33 (1) 4(£0.1) 22(1) 43 (£ 1) 88
20 >99 (2 2) >99 (£ 1) >99 (+ 14) >99 (£ 1) >99 (£ 7) 89
21 >99 (2 3) 85 (+2) 81(2) >99 (£5) >99 (£ 10) 90
2 >99 (£ 13) 94 (+2) >99 (£ 2) >99 (£ 3) >99 (£3) 91
23 81 (¢5) 67 (3) 57 (+0.4) 79 (£ 2) 77 (£ 6) 92
24 >99 (2 8) 56 ( 7) 18 (2 3) 58 (¢ 2) 72 (¢ 1) 93
25 95 (¢ 5) 91 (£ 4) 51 (¢5) >99 (4) 99 (£3) 94
26 63 (£5) 21 (£ 4) 1(x0.4) 10(21) 20 (2 6) 95
27 82 (+ 14) 31(£0.1) 30 (¢ 1) 76 (£ 1) 80 (x 6) 96
28 0.2 (£0) 5(£0.1) ND 1(£0.03) 3(£2) 97
29 27 (¢ 1) 21 (£ 0.4) 4(x0.2) 21 (£ 0.4) 19 (£ 0.1) 98
30 32(£0.2) 81 (# 15) 17 (£ 0.1) 60 (¢ 3) 62 (£ 1) 99
31 50 (¢ 3) 53 (¢ 10) 1(x0.1) 9(£2) 19 (2 8) 100
32 8(+1) 44 (£ 8) ND 2(£1) 2(£1) 101
33 74 (£ 2) 66 (2 9) 4(£0.3) 26 (1) 39 (£ 1) 102
34 3(£2) 53 (¢ 3) 43 (£3) >99 (£7) >99 (£ 8) 103
35 8(£0.5) 58 (£ 12) 0.2(£0) 10(22) 14 (1) 104
36 73 (£ 8) 39 (2 6) 1(£0.2) 8(£0.4) 10 (2 3) 105
37 <1 23 (1) 5(£0.2) 74 (£ 1) 48 (£ 8) 106
38 5(£4) 64 (1) 51(2) >99 (£ 8) >99 (£7) 107
39 24 (+ 6) 25 (+2) 17 (2 3) 44 (£ 1) 37 (¢3) 72
40 4(22) 3(£1) 4(21) 25 (£8) 34 (£ 9) 74
a1 ND 54 (2 1) ND ND 0.1(£0.01) 71
2 69 (£ 5) >99 (£ 12) 54 (9) 77 (£ 8) 59 (£7) 76
3 39 (£2) 65 (+ 6) 1(x0) 1(0.03) 2(£0.02) 75
44 18 (2 4) 12(29) 6(+1) 47 (£2) 53(£7) 73
5 <1 12(x1) 0.1(£0.1) 13 (1) 2(£2) 108
6 0.3 (£0.02) 2(£0.1) 0.2(£0) 3(£0.1) 7(£1) 109

Table shows yields of ligation of carboxylic acids (8-46) with L-Ile to give the corresponding amides (64, 71-76, 78-109) catalysed by Cfals. Assays were
carried out with wild-type and engineered Cfal enzymes (25 uM), carboxylic acids (8-46) (2 mM) and L-Ile (5 mM). Conversions were almost all calculated
by HPLC or liquid chromatography mass spectrometry (LCMS) using standard curves of synthesized standards following 20 h incubation (see footnote a
for the sole exception). Values represent means, error denotes s.d., withn=3.

ND, not detected.

2Yield of compound 85 was calculated using HPLC peak area ratios of product and starting material.



Extended Data Table 3 | Ligation of 9 to a range of proteinogenic amino acids

Percentage Yield

Compound no SsCfal AlCfaL PbCfaL (;gggaé) (R39F;l()5(/:;a;9 ap)
L-Isoleucine 100 (+0) 100 (x0) 92 (+1) 100 (x0) 100 (x0)
D-Isoleucine ND ND ND ND ND
L-Valine 100 (+0) 100 (+0) 53(+0.1) 63 (x2) 55(x0.5)
L-leucine 58 (+0.2) 91(+1) 40 (£ 0.5) 49 (1) 40 (1)
L-Methionine 63 (£0.5) 100 (£ 0) 20 (+0.5) 25(+0.5) 20 (+4)
L-Alanine 13 (+2) 27 (£13) ND ND ND
L-Threonine 23(+1) 70 (1) 7(£0.2) 7(x0.2) 5(+0.2)
L-Cysteine 39 (+1) 46 (+3) 10 (£ 0) 9(+0.4) 10 (+0.2)
D-Cysteine 5(+0.4) 5(+0.4) 10 (£ 0) 6(+0.1) 7(+0.4)
L-Serine 10 (+ 6) 20(x2) ND ND ND
L-Asparagine 16 (+ 4) 42 (+1) <1 <1 <1
L-Glutamine 4(+0.4) ND ND ND ND
L-Tryptophan 34 (£ 4) <1 18 (+3) 22 (+4) 17 (£ 3)
L-Tyrosine 8(+3) 11 (+0.5) 5(+0.4) 8(+2) 6 (+2)
L-Phenylalanine 5(+2) 14 (£ 0.4) 4(x0.2) 6(+2) 3(+0.2)
L-Arginine 14 (£ 0.6) ND ND ND ND
L-Histidine 14 (£1) ND ND ND ND
L-Lysine ND ND ND ND ND
L-Aspartic Acid ND ND ND ND ND
L-Glutamic Acid ND ND ND ND ND
Glycine ND ND ND ND ND
L-Proline ND ND ND ND ND

Table shows yields of ligation of carboxylic acid 9 to a range of proteinogenic amino acids catalysed by Cfals. Assays were carried out with wild-type
and engineered Cfal enzymes (5 pM), carboxylic acid 9 (1 mM) and amino acids (2 mM). Conversion of 9 to amide products was calculated using HPLC
peak area ratios of product and starting material following 20 h of incubation. Low level of activity with D-cysteine possibly occurs via native chemical
ligation mechanisms. Values represent means, error denotes s.d., with n=3. ND, not detected.
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Extended Data Table 4 | Ligation of 9 to a range of non-proteinogenic amino acids

Percentage Yield

Compound no SsCfal AlCfaL PbCfaL (:l;gfsaé) (RSS';Z?AE‘ZLMP)
L-allolsoleucine 100 (£ 0) 100 (+0) 56 (+1) 67 (£0.5) 59 (+2)
D-allolsoleucine ND ND ND ND ND
L-Dab (47) 15 (+0.8) 12 (+0.6) 6(+0.3) 4(+0.1) 3(+0.1)
L-Orn (48) 0.9(+0.2) 11(+0.2) 7(x1) 4(+0.01) 3 (+0.05)
a9 \o/\f\o« 28 (£0.2) 100 (+0) 2 (+0.02) 4(+0.04) 14 (+ 0.03)
50 \s/\fio« 22(+0.1) 100 (+0) 1(+0.4) 1(+0.4) 49 (+0.6)
51 \/\HLO« 65 (+2) 100 (+ 0) 15 (+ 0.05) 38 (+0.1) 76 (+0.4)
52 /\/\'!iion 31(+0.5) 100 (+0) 11(+£0.2) 30 (+0.02) 61(+0.1)
53 >‘\N|{Lm 79 (£ 0.4) 100 (+0.1) 11 (+0.1) 33(+0.2) 39 (+0.4)
54 MW 20 (£3) 69 (+3) ND ND ND
55 AMHE\ON 44 (+0.4) 96 (+0.3) 4(x0) 13 (£0.2) 39(+0.2)
56 «\& 40(+0.2) 100 (+ 0) 12 (+0.7) 36 (+0.2) 72 (£0.5)
57 D/\fi 12 (+0.5) 75 (+0.9) 13 (+0.3) 31(x0.3) 61(+0.3)
58 O\(L‘Lm 31(+0.2) 32(+0.5) 19 (£0.2) 44 (+0.2) 62 (+1)
59 O/\g\on 4(£0.1) 81(+8) 2+(0.04) 4(+£0.1) 16 (£ 0.5)
60 Q\/Y‘ELM 9(+0.2) 19 (+0.1) 0.7 (+0.02) 2 (+0.04) 3 (+0.04)

61 @/\*w 7(+1) 36 (+0.5) 2(+0.1) 5(+0.2) 15 (1)

Table shows yields of ligation of carboxylic acid 9 to a range of non-proteinogenic amino acids catalysed by CfalLs. Assays were carried out with
wild-type and engineered Cfal enzymes (5 pM), carboxylic acid 9 (1 mM) and amino acids (2 mM). Conversions of 9 to amide products were calculated
using HPLC peak area ratios of product and starting material following 20 h of incubation. Values represent means, error denotes s.d., with n=3. ND,
not detected.
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